18 research outputs found

    Effect of the surgeonfish Ctenochaetus striatus (Acanthuridae) on the processes of sediment transport and deposition on a Red Sea coral reef

    Get PDF
    Excessive sedimentation is a major threat to coral reefs. It can damage or kill reef-building corals andcan prevent the successful settlement of their planktonic larvae. The surgeonfish Ctenochaetus striatus feeds onrocky surfaces by sweeping loose material into its mouth with its flexible, broom-like teeth. In addition, it graspsand removes hard substrates with the aid of its special palate structure. It then transports sediment matter of thereef by defecating the ingested material outside the rocky zone of the reef. We analyzed 150 feces samples ofsix individuals, diferentiating between (1) ingested by sweeping and (2) ingested by scraping, and compared theircontent with inorganic land-derived and marine sediments trapped at the feeding area. Projections based on fishdensities, defecation rates, and quantities as well as composition of sediments collected by traps on the same reefsite suggest that C. striatus removes at least 18% of the inorganic sediment sinking onto the reef crest. Theeroded share in the exported matter is about 13%. This finding points to a hitherto not verified role of C. striatusas a reef sweeper and reef scraper, whereby the first function is by far dominating

    Differential Impact of Monsoon and Large Amplitude Internal Waves on Coral Reef Development in the Andaman Sea

    Get PDF
    The Andaman Sea and other macrotidal semi-enclosed tropical seas feature large amplitude internal waves (LAIW). Although LAIW induce strong fluctuations i.e. of temperature, pH, and nutrients, their influence on reef development is so far unknown. A better-known source of disturbance is the monsoon affecting corals due to turbulent mixing and sedimentation. Because in the Andaman Sea both, LAIW and monsoon, act from the same westerly direction their relative contribution to reef development is difficult to discern. Here, we explore the framework development in a number of offshore island locations subjected to differential LAIW- and SW-monsoon impact to address this open question. Cumulative negative temperature anomalies – a proxy for LAIW impact – explained a higher percentage of the variability in coral reef framework height, than sedimentation rates which resulted mainly from the monsoon. Temperature anomalies and sediment grain size provided the best correlation with framework height suggesting that so far neglected subsurface processes (LAIW) play a significant role in shaping coral reefs

    The influence of natural body sway on neuromuscular responses to an unpredictable surface translation

    No full text
    Previous research has shown that the postural configuration adopted by a subject, such as active leaning, influences the postural response to an unpredictable support surface translation. While those studies have examined large differences in postural conditions, it is of additional interest to examine the effects of naturally occurring changes in standing posture. Thus, it was hypothesized that the normal postural sway observed during quiet standing would affect the responses to an unpredictable support surface translation. Seventeen young adults stood quietly on a moveable platform and were perturbed in either the forward or backward direction when the location of the center of pressure (COP) was either 1.5 standard deviations anterior or posterior to the mean baseline COP signal. Postural responses, in the form of electromyographic (EMG) latencies and amplitudes, were recorded from lower limb and trunk muscles. When the location of the COP at the time of the translation was in the opposite, as compared to the same, direction as the upcoming translation, there was a significantly earlier onset of the antagonists (10-23%, i.e. 15-45 ms) and a greater EMG amplitude (14-39%) in four of the six recorded muscles. Stepping responses were most frequently observed during trials where the position of the COP was opposite to the direction of the translation. The results support the hypothesis that postural responses to unpredictable support surface translations are influenced by the normal movements of postural sway. The results may help to explain the large variability of postural responses found between past studies

    Deceleration affects anticipatory and reactive components of triggered postural responses

    No full text
    Understanding the physiological and psychological factors that contribute to healthy and pathological balance control in man has been made difficult by the confounding effects of the perturbations used to test balance reactions. The present study examined how postural responses were influenced by the acceleration-deceleration interval of an unexpected horizontal translation. Twelve adult males maintained balance during unexpected forward and backward surface translations with two different acceleration-deceleration intervals and presentation orders (serial or random). SHORT perturbations consisted of an initial acceleration (peak acceleration 1.3 m s(-2); duration 300 ms) followed 100 ms later by a deceleration. LONG perturbations had the same acceleration as SHORT perturbations, followed by a 2-s interval of constant velocity before deceleration. Surface and intra-muscular electromyography (EMG) from the leg, trunk, and shoulder muscles were recorded along with motion and force plate data. LONG perturbations induced larger trunk displacements compared to SHORT perturbations when presented randomly and larger EMG responses in proximal and distal muscles during later (500-800 ms) response intervals. During SHORT perturbations, activity in some antagonist muscles was found to be associated with deceleration and not the initial acceleration of the support surface. When predictable, SHORT perturbations facilitated the use of anticipatory mechanisms to attenuate early (100-400 ms) EMG response amplitudes, ankle torque change and trunk displacement. In contrast, LONG perturbations, without an early deceleration effect, did not facilitate anticipatory changes when presented in a predictable order. Therefore, perturbations with a short acceleration-deceleration interval can influence triggered postural responses through reactive effects and, when predictable with repeated exposure, through anticipatory mechanisms
    corecore