237 research outputs found

    Optimized EPI for fMRI studies of the orbitofrontal cortex: compensation of susceptibility-induced gradients in the readout direction

    Get PDF
    Object Most functional magnetic resonance imaging (fMRI) studies record the blood oxygen leveldependent (BOLD) signal using gradient-echo echo-planar imaging (GE EPI). EPI can suffer from substantial BOLD sensitivity loss caused by magnetic field inhomogeneities. Here, BOLD sensitivity losses due to susceptibility- induced gradients in the readout (RO) direction are characterized and a compensation approach is developed

    Small but crucial : the novel small heat shock protein Hsp21 mediates stress adaptation and virulence in Candida albicans

    Get PDF
    Peer reviewedPublisher PD

    Diverging results of areal and volumetric bone mineral density in Down syndrome

    Get PDF
    Population with Down syndrome (DS) has lower areal BMD, in association with their smaller skeletal size. However, volumetric BMD and other indices of bone microarchitecture, such as trabecular bone score (TBS) and calcaneal ultrasound (QUS), were normal. INTRODUCTION: Patients with DS have a number of risk factors that could predispose them to osteoporosis. Several studies reported that people with DS also have lower areal bone mineral density, but differences in the skeletal size could bias the analysis. METHODS: Seventy-five patients with DS and 76 controls without intellectual disability were recruited. Controls were matched for age and sex. Bone mineral density (BMD) was measure by Dual-energy X-ray Absorptiometry (DXA), and volumetric bone mineral density (vBMD) was calculated by published formulas. Body composition was also measured by DXA. Microarchitecture was measured by TBS and QUS. Serum 25-hidroxyvitamin D (25OHD), parathyroid hormone (PTH), aminoterminal propeptide of type collagen (P1NP), and C-terminal telopeptide of type I collagen (CTX) were also determined. Physical activity was assessed by the International Physical Activity Questionnaires (IPAQ-short form). To evaluate nutritional intake, we recorded three consecutive days of food. RESULTS: DS individuals had lower height (151 ± 11 vs. 169 ± 9 cm). BMD was higher in the controls (lumbar spine (LS) 0.903 ± 0.124 g/cm2 in patients and 0.997 ± 0.115 g/cm2 in the controls; femoral neck (FN) 0.761 ± .126 g/cm2 and 0.838 ± 0.115 g/cm2, respectively). vBMD was similar in the DS group (LS 0.244 ± 0.124 g/cm3; FN 0.325 ± .0.073 g/cm3) and the controls (LS 0.255 ± 0.033 g/cm3; FN 0.309 ± 0.043 g/cm3). Microarchitecture measured by QUS was slightly better in DS, and TBS measures were similar in both groups. 25OHD, PTH, and CTX were similar in both groups. P1NP was higher in the DS group. Time spent on exercise was similar in both groups, but intensity was higher in the control group. Population with DS has correct nutrition. CONCLUSIONS: Areal BMD is reduced in DS, but it seems to be related to the smaller body and skeletal size. In fact, the estimated volumetric BMD is similar in patients with DS and in control individuals. Furthermore, people with DS have normal bone microarchitecture

    Set optimization - a rather short introduction

    Full text link
    Recent developments in set optimization are surveyed and extended including various set relations as well as fundamental constructions of a convex analysis for set- and vector-valued functions, and duality for set optimization problems. Extensive sections with bibliographical comments summarize the state of the art. Applications to vector optimization and financial risk measures are discussed along with algorithmic approaches to set optimization problems

    RNA Polymerase II Pausing Downstream of Core Histone Genes Is Different from Genes Producing Polyadenylated Transcripts

    Get PDF
    Recent genome-wide chromatin immunoprecipitation coupled high throughput sequencing (ChIP-seq) analyses performed in various eukaryotic organisms, analysed RNA Polymerase II (Pol II) pausing around the transcription start sites of genes. In this study we have further investigated genome-wide binding of Pol II downstream of the 3′ end of the annotated genes (EAGs) by ChIP-seq in human cells. At almost all expressed genes we observed Pol II occupancy downstream of the EAGs suggesting that Pol II pausing 3′ from the transcription units is a rather common phenomenon. Downstream of EAGs Pol II transcripts can also be detected by global run-on and sequencing, suggesting the presence of functionally active Pol II. Based on Pol II occupancy downstream of EAGs we could distinguish distinct clusters of Pol II pause patterns. On core histone genes, coding for non-polyadenylated transcripts, Pol II occupancy is quickly dropping after the EAG. In contrast, on genes, whose transcripts undergo polyA tail addition [poly(A)+], Pol II occupancy downstream of the EAGs can be detected up to 4–6 kb. Inhibition of polyadenylation significantly increased Pol II occupancy downstream of EAGs at poly(A)+ genes, but not at the EAGs of core histone genes. The differential genome-wide Pol II occupancy profiles 3′ of the EAGs have also been confirmed in mouse embryonic stem (mES) cells, indicating that Pol II pauses genome-wide downstream of the EAGs in mammalian cells. Moreover, in mES cells the sharp drop of Pol II signal at the EAG of core histone genes seems to be independent of the phosphorylation status of the C-terminal domain of the large subunit of Pol II. Thus, our study uncovers a potential link between different mRNA 3′ end processing mechanisms and consequent Pol II transcription termination processes

    Resting-State Functional Connectivity between Fronto-Parietal and Default Mode Networks in Obsessive-Compulsive Disorder

    Get PDF
    Background: Obsessive-compulsive disorder (OCD) is characterized by an excessive focus on upsetting or disturbing thoughts, feelings, and images that are internally-generated. Internally-focused thought processes are subserved by the ‘‘default mode network’ ’ (DMN), which has been found to be hyperactive in OCD during cognitive tasks. In healthy individuals, disengagement from internally-focused thought processes may rely on interactions between DMN and a frontoparietal network (FPN) associated with external attention and task execution. Altered connectivity between FPN and DMN may contribute to the dysfunctional behavior and brain activity found in OCD. Methods: The current study examined interactions between FPN and DMN during rest in 30 patients with OCD (17 unmedicated) and 32 control subjects (17 unmedicated). Timecourses from seven fronto-parietal seeds were correlated across the whole brain and compared between groups. Results: OCD patients exhibited altered connectivity between FPN seeds (primarily anterior insula) and several regions of DMN including posterior cingulate cortex, medial frontal cortex, posterior inferior parietal lobule, and parahippocampus. These differences were driven largely by a reduction of negative correlations among patients compared to controls. Patients also showed greater positive connectivity between FPN and regions outside DMN, including thalamus, lateral frontal cortex, and somatosensory/motor regions

    Modeling double strand break susceptibility to interrogate structural variation in cancer

    Get PDF
    Abstract Background Structural variants (SVs) are known to play important roles in a variety of cancers, but their origins and functional consequences are still poorly understood. Many SVs are thought to emerge from errors in the repair processes following DNA double strand breaks (DSBs). Results We used experimentally quantified DSB frequencies in cell lines with matched chromatin and sequence features to derive the first quantitative genome-wide models of DSB susceptibility. These models are accurate and provide novel insights into the mutational mechanisms generating DSBs. Models trained in one cell type can be successfully applied to others, but a substantial proportion of DSBs appear to reflect cell type-specific processes. Using model predictions as a proxy for susceptibility to DSBs in tumors, many SV-enriched regions appear to be poorly explained by selectively neutral mutational bias alone. A substantial number of these regions show unexpectedly high SV breakpoint frequencies given their predicted susceptibility to mutation and are therefore credible targets of positive selection in tumors. These putatively positively selected SV hotspots are enriched for genes previously shown to be oncogenic. In contrast, several hundred regions across the genome show unexpectedly low levels of SVs, given their relatively high susceptibility to mutation. These novel coldspot regions appear to be subject to purifying selection in tumors and are enriched for active promoters and enhancers. Conclusions We conclude that models of DSB susceptibility offer a rigorous approach to the inference of SVs putatively subject to selection in tumors

    Impact of Visual Repetition Rate on Intrinsic Properties of Low Frequency Fluctuations in the Visual Network

    Get PDF
    BACKGROUND: Visual processing network is one of the functional networks which have been reliably identified to consistently exist in human resting brains. In our work, we focused on this network and investigated the intrinsic properties of low frequency (0.01-0.08 Hz) fluctuations (LFFs) during changes of visual stimuli. There were two main questions to be discussed in this study: intrinsic properties of LFFs regarding (1) interactions between visual stimuli and resting-state; (2) impact of repetition rate of visual stimuli. METHODOLOGY/PRINCIPAL FINDINGS: We analyzed scanning sessions that contained rest and visual stimuli in various repetition rates with a novel method. The method included three numerical approaches involving ICA (Independent Component Analyses), fALFF (fractional Amplitude of Low Frequency Fluctuation), and Coherence, to respectively investigate the modulations of visual network pattern, low frequency fluctuation power, and interregional functional connectivity during changes of visual stimuli. We discovered when resting-state was replaced by visual stimuli, more areas were involved in visual processing, and both stronger low frequency fluctuations and higher interregional functional connectivity occurred in visual network. With changes of visual repetition rate, the number of areas which were involved in visual processing, low frequency fluctuation power, and interregional functional connectivity in this network were also modulated. CONCLUSIONS/SIGNIFICANCE: To combine the results of prior literatures and our discoveries, intrinsic properties of LFFs in visual network are altered not only by modulations of endogenous factors (eye-open or eye-closed condition; alcohol administration) and disordered behaviors (early blind), but also exogenous sensory stimuli (visual stimuli with various repetition rates). It demonstrates that the intrinsic properties of LFFs are valuable to represent physiological states of human brains

    Hypoxia and hypoxia inducible factor-1α are required for normal endometrial repair during menstruation

    Get PDF
    About a quarter of pre-menopausal women will suffer from heavy menstrual bleeding in their lives. Here, Maybin and colleagues show hypoxia and subsequent activation of HIF-1α during menses are required for normal endometrial repair, and identify pharmacological stabilisation of HIF-1α as a potential therapeutic strategy for this debilitating condition

    Modulation of Aβ(42 )low-n oligomerization using a novel yeast reporter system

    Get PDF
    BACKGROUND: While traditional models of Alzheimer's disease focused on large fibrillar deposits of the Aβ(42 )amyloid peptide in the brain, recent work suggests that the major pathogenic effects may be attributed to SDS-stable oligomers of Aβ(42). These Aβ(42 )oligomers represent a rational target for therapeutic intervention, yet factors governing their assembly are poorly understood. RESULTS: We describe a new yeast model system focused on the initial stages of Aβ(42 )oligomerization. We show that the activity of a fusion of Aβ(42 )to a reporter protein is compromised in yeast by the formation of SDS-stable low-n oligomers. These oligomers are reminiscent of the low-n oligomers formed by the Aβ(42 )peptide in vitro, in mammalian cell culture, and in the human brain. Point mutations previously shown to inhibit Aβ(42 )aggregation in vitro, were made in the Aβ(42 )portion of the fusion protein. These mutations both inhibited oligomerization and restored activity to the fusion protein. Using this model system, we found that oligomerization of the fusion protein is stimulated by millimolar concentrations of the yeast prion curing agent guanidine. Surprisingly, deletion of the chaperone Hsp104 (a known target for guanidine) inhibited oligomerization of the fusion protein. Furthermore, we demonstrate that Hsp104 interacts with the Aβ(42)-fusion protein and appears to protect it from disaggregation and degradation. CONCLUSION: Previous models of Alzheimer's disease focused on unravelling compounds that inhibit fibrillization of Aβ(42), i.e. the last step of Aβ(42 )assembly. However, inhibition of fibrillization may lead to the accumulation of toxic oligomers of Aβ(42). The model described here can be used to search for and test proteinacious or chemical compounds for their ability to interfere with the initial steps of Aβ(42 )oligomerization. Our findings suggest that yeast contain guanidine-sensitive factor(s) that reduce the amount of low-n oligomers of Aβ(42). As many yeast proteins have human homologs, identification of these factors may help to uncover homologous proteins that affect Aβ(42 )oligomerization in mammals
    corecore