430 research outputs found
Reliability of two behavioral tools to assess pain in preterm neonates
CONTEXT: One of the main difficulties in adequately treating the pain of neonatal patients is the scarcity of validated pain evaluation methods for this population. OBJECTIVE: To analyze the reliability of two behavioral pain scales in neonates. TYPE OF STUDY: Cross-sectional. SETTING: University hospital neonatal intensive care unit. PARTICIPANTS: 22 preterm neonates were studied, with gestational age of 34 ± 2 weeks, birth weight of 1804 ± 584 g, 68% female, 30 ± 12 hours of life, and 30% intubated. PROCEDURES: Two neonatologists (A and B) observed the patients at the bedside and on video films for 10 minutes. The Neonatal Facial Coding System and the Clinical Scoring System were scored at 1, 5, and 10 minutes. The final score was the median of the three values for each observer and scale. A and B were blinded to each other. Video assessments were made three months after bedside evaluations. MAIN MEASUREMENTS: End scores were compared between the observers using the intraclass correlation coefficient and bias analysis (paired t test and signal test). RESULTS: For the Neonatal Facial Coding System, at the bedside and on video, A and B showed a significant correlation of scores (intraclass correlation score: 0.62), without bias between them (t test and signal test: p > 0.05). For the Clinical Scoring System bedside assessment, A and B showed correlation of scores (intraclass correlation score: 0.55), but bias was also detected between them: A scored on average two points higher than B (paired t test and signal test: p 0,05). Para a Escala de Conforto Clínico à beira do leito, os escores obtidos por A e B mostraram uma correlação significante (0,55), foi detectado: o escore obtido por A foi, em média, dois pontos superior ao de B (teste t e do sinal: p < 0,05). Para a mesma escala aplicada em vídeo, os escores obtidos por A e B não mostraram correlação (0,25) e detectou-se viés (teste t e do sinal: p < 0,05). CONCLUSÃO: Os resultados reforçam a confiabilidade do Sistema de Codificação da Atividade Facial Neonatal aplicado à beira do leito para a avaliação da dor no recém-nascido pré-termo.Universidade Federal de São Paulo (UNIFESP) Escola Paulista de MedicinaUniversidade Federal de São Paulo (UNIFESP) Escola Paulista de Medicina Neonatal DivisionUniversidade Federal de São Paulo (UNIFESP) Escola Paulista de Medicina Department of EpidemiologyUNIFESP, EPM, Neonatal DivisionUNIFESP, EPM, Department of EpidemiologySciEL
Recommended from our members
Combined sensitivity to the neutrino mass ordering with JUNO, the IceCube Upgrade, and PINGU
The ordering of the neutrino mass eigenstates is one of the fundamental open questions in neutrino physics. While current-generation neutrino oscillation experiments are able to produce moderate indications on this ordering, upcoming experiments of the next generation aim to provide conclusive evidence. In this paper we study the combined performance of the two future multi-purpose neutrino oscillation experiments JUNO and the IceCube Upgrade, which employ two very distinct and complementary routes toward the neutrino mass ordering. The approach pursued by the 20 kt medium-baseline reactor neutrino experiment JUNO consists of a careful investigation of the energy spectrum of oscillated νe produced by ten nuclear reactor cores. The IceCube Upgrade, on the other hand, which consists of seven additional densely instrumented strings deployed in the center of IceCube DeepCore, will observe large numbers of atmospheric neutrinos that have undergone oscillations affected by Earth matter. In a joint fit with both approaches, tension occurs between their preferred mass-squared differences Δm312=m32-m12 within the wrong mass ordering. In the case of JUNO and the IceCube Upgrade, this allows to exclude the wrong ordering at >5σ on a timescale of 3-7 years - even under circumstances that are unfavorable to the experiments' individual sensitivities. For PINGU, a 26-string detector array designed as a potential low-energy extension to IceCube, the inverted ordering could be excluded within 1.5 years (3 years for the normal ordering) in a joint analysis
Recommended from our members
Time-Integrated Neutrino Source Searches with 10 Years of IceCube Data.
This Letter presents the results from pointlike neutrino source searches using ten years of IceCube data collected between April 6, 2008 and July 10, 2018. We evaluate the significance of an astrophysical signal from a pointlike source looking for an excess of clustered neutrino events with energies typically above ∼1 TeV among the background of atmospheric muons and neutrinos. We perform a full-sky scan, a search within a selected source catalog, a catalog population study, and three stacked Galactic catalog searches. The most significant point in the northern hemisphere from scanning the sky is coincident with the Seyfert II galaxy NGC 1068, which was included in the source catalog search. The excess at the coordinates of NGC 1068 is inconsistent with background expectations at the level of 2.9σ after accounting for statistical trials from the entire catalog. The combination of this result along with excesses observed at the coordinates of three other sources, including TXS 0506+056, suggests that, collectively, correlations with sources in the northern catalog are inconsistent with background at 3.3σ significance. The southern catalog is consistent with background. These results, all based on searches for a cumulative neutrino signal integrated over the 10 years of available data, motivate further study of these and similar sources, including time-dependent analyses, multimessenger correlations, and the possibility of stronger evidence with coming upgrades to the detector
Recommended from our members
Design and performance of the first IceAct demonstrator at the South Pole
In this paper we describe the first results of IceAct, a compact imaging air-Cherenkov telescope operating in coincidence with the IceCube Neutrino Observatory (IceCube) at the geographic South Pole. An array of IceAct telescopes (referred to as the IceAct project) is under consideration as part of the IceCube-Gen2 extension to IceCube. Surface detectors in general will be a powerful tool in IceCube-Gen2 for distinguishing astrophysical neutrinos from the dominant backgrounds of cosmic-ray induced atmospheric muons and neutrinos: the IceTop array is already in place as part of IceCube, but has a high energy threshold. Although the duty cycle will be lower for the IceAct telescopes than the present IceTop tanks, the IceAct telescopes may prove to be more effective at lowering the detection threshold for air showers. Additionally, small imaging air-Cherenkov telescopes in combination with IceTop, the deep IceCube detector or other future detector systems might improve measurements of the composition of the cosmic ray energy spectrum. In this paper we present measurements of a first 7-pixel imaging air Cherenkov telescope demonstrator, proving the capability of this technology to measure air showers at the South Pole in coincidence with IceTop and the deep IceCube detector
Recommended from our members
Efficient propagation of systematic uncertainties from calibration to analysis with the SnowStorm method in IceCube
Efficient treatment of systematic uncertainties that depend on a large number of nuisance parameters is a persistent difficulty in particle physics and astrophysics experiments. Where low-level effects are not amenable to simple parameterization or re-weighting, analyses often rely on discrete simulation sets to quantify the effects of nuisance parameters on key analysis observables. Such methods may become computationally untenable for analyses requiring high statistics Monte Carlo with a large number of nuisance degrees of freedom, especially in cases where these degrees of freedom parameterize the shape of a continuous distribution. In this paper we present a method for treating systematic uncertainties in a computationally efficient and comprehensive manner using a single simulation set with multiple and continuously varied nuisance parameters. This method is demonstrated for the case of the depth-dependent effective dust distribution within the IceCube Neutrino Telescope
Gebiss: an ImageJ plugin for the specification of ground truth and the performance evaluation of 3D segmentation algorithms.
Background: Image segmentation is a crucial step in quantitative microscopy that helps to define regions of tissues, cells or subcellular compartments. Depending on the degree of user interactions, segmentation methods can be divided into manual, automated or semi-automated approaches. 3D image stacks usually require automated methods due to their large number of optical sections. However, certain applications benefit from manual or semi-automated approaches. Scenarios include the quantification of 3D images with poor signal-to-noise ratios or the generation of so-called ground truth segmentations that are used to evaluate the accuracy of automated segmentation methods.
Results: We have developed Gebiss; an ImageJ plugin for the interactive segmentation, visualisation and quantification of 3D microscopic image stacks. We integrated a variety of existing plugins for threshold-based segmentation and volume visualisation.
Conclusions: We demonstrate the application of Gebiss to the segmentation of nuclei in live Drosophila embryos and the quantification of neurodegeneration in Drosophila larval brains. Gebiss was developed as a cross-platform ImageJ plugin and is freely available on the web at http://imaging.bii.a-star.edu.sg/projects/gebiss
Recommended from our members
Neutrinos below 100 TeV from the southern sky employing refined veto techniques to IceCube data
Many Galactic sources of gamma rays, such as supernova remnants, are expected to produce neutrinos with a typical energy cutoff well below 100 TeV. For the IceCube Neutrino Observatory located at the South Pole, the southern sky, containing the inner part of the Galactic plane and the Galactic Center, is a particularly challenging region at these energies, because of the large background of atmospheric muons. In this paper, we present recent advancements in data selection strategies for track-like muon neutrino events with energies below 100 TeV from the southern sky. The strategies utilize the outer detector regions as veto and features of the signal pattern to reduce the background of atmospheric muons to a level which, for the first time, allows IceCube searching for point-like sources of neutrinos in the southern sky at energies between 100 GeV and several TeV in the muon neutrino charged current channel. No significant clustering of neutrinos above background expectation was observed in four years of data recorded with the completed IceCube detector. Upper limits on the neutrino flux for a number of spectral hypotheses are reported for a list of astrophysical objects in the southern hemisphere
Weight outcomes audit in 1.3 million adults during their first 3 months' attendance in a commercial weight management programme
Background: Over sixty percent of adults in the UK are now overweight/obese. Weight management on a national scale requires behavioural and lifestyle solutions that are accessible to large numbers of people. Evidence suggests commercial weight management programmes help people manage their weight but there is little research examining those that pay to attend such programmes rather than being referred by primary care. The objective of this analysis was to evaluate the effectiveness of a UK commercial weight management programme in self-referred, fee-paying participants. Methods: Electronic weekly weight records were collated for self-referred, fee-paying participants of Slimming World groups joining between January 2010 and April 2012. This analysis reports weight outcomes in 1,356,105 adult, non-pregnant participants during their first 3 months’ attendance. Data were analysed by regression, ANOVA and for binomial outcomes, chi-squared tests using the R statistical program. Results: Mean (SD) age was 42.3 (13.6) years, height 1.65 m (0.08) and start weight was 88.4 kg (18.8). Mean start BMI was 32.6 kg/m² (6.3 kg/m²) and 5 % of participants were men. Mean weight change of all participants was −3.9 kg (3.6), percent weight change −4.4 (3.8), and BMI change was −1.4 kg/m² (1.3). Mean attendance was 7.8 (4.3) sessions in their first 3 months. For participants attending at least 75 % of possible weekly sessions (n = 478,772), mean BMI change was −2.5 kg/m² (1.3), weight change −6.8 kg (3.7) and percent weight change −7.5 % (3.5). Weight loss was greater in men than women absolutely (−6.5 (5.3) kg vs −3.8 (3.4) kg) and as a percentage (5.7 % (4.4) vs 4.3 % (3.7)), respectively. All comparisons were significant (p < 0.001). Level of attendance and percent weight loss in the first week of attendance together accounted for 55 % of the variability in weight lost during the study period. Conclusions: A large-scale commercial lifestyle-based weight management programme had a significant impact on weight loss outcomes over 3 months. Higher levels of attendance led to levels of weight loss known to be associated with significant clinical benefits, which on this scale may have an impact on public health
Lateral distribution of muons in IceCube cosmic ray events
In cosmic ray air showers, the muon lateral separation from the center of the shower is a measure of the transverse momentum that the muon parent acquired in the cosmic ray interaction. IceCube has observed cosmic ray interactions that produce muons laterally separated by up to 400 m from the shower core, a factor of 6 larger distance than previous measurements. These muons originate in high p(T) (>2 GeV/c) interactions from the incident cosmic ray, or high-energy secondary interactions. The separation distribution shows a transition to a power law at large values, indicating the presence of a hard p(T) component that can be described by perturbative quantum chromodynamics. However, the rates and the zenith angle distributions of these events are not well reproduced with the cosmic ray models tested here, even those that include charm interactions. This discrepancy may be explained by a larger fraction of kaons and charmed particles than is currently incorporated in the simulations.R. Abbasi ... G. C. Hill ... et al. (IceCube Collaboration
- …
