22 research outputs found

    Metabolomic and transcriptomic analysis of the rice response to the bacterial blight pathogen Xanthomonas oryzae pv. oryzae

    Get PDF
    Bacterial leaf blight (BLB), caused by Xanthomonas oryzae pv. oryzae (Xoo), gives rise to devastating crop losses in rice. Disease resistant rice cultivars are the most economical way to combat the disease. The TP309 cultivar is susceptible to infection by Xoo strain PXO99. A transgenic variety, TP309_Xa21, expresses the pattern recognition receptor Xa21, and is resistant. PXO99△raxST, a strain lacking the raxST gene, is able to overcome Xa21-mediated immunity. We used a single extraction solvent to demonstrate comprehensive metabolomics and transcriptomics profiling under sample limited conditions, and analyze the molecular responses of two rice lines challenged with either PXO99 or PXO99△raxST. LC–TOF raw data file filtering resulted in better within group reproducibility of replicate samples for statistical analyses. Accurate mass match compound identification with molecular formula generation (MFG) ranking of 355 masses was achieved with the METLIN database. GC–TOF analysis yielded an additional 441 compounds after BinBase database processing, of which 154 were structurally identified by retention index/MS library matching. Multivariate statistics revealed that the susceptible and resistant genotypes possess distinct profiles. Although few mRNA and metabolite differences were detected in PXO99 challenged TP309 compared to mock, many differential changes occurred in the Xa21-mediated response to PXO99 and PXO99△raxST. Acetophenone, xanthophylls, fatty acids, alkaloids, glutathione, carbohydrate and lipid biosynthetic pathways were affected. Significant transcriptional induction of several pathogenesis related genes in Xa21 challenged strains, as well as differential changes to GAD, PAL, ICL1 and Glutathione-S-transferase transcripts indicated limited correlation with metabolite changes under single time point global profiling conditions

    Inter-laboratory reproducibility of fast gas chromatography–electron impact–time of flight mass spectrometry (GC–EI–TOF/MS) based plant metabolomics

    Get PDF
    The application of gas chromatography–mass spectrometry (GC–MS) to the ‘global’ analysis of metabolites in complex samples (i.e. metabolomics) has now become routine. The generation of these data-rich profiles demands new strategies in data mining and standardisation of experimental and reporting aspects across laboratories. As part of the META-PHOR project’s (METAbolomics for Plants Health and OutReach: http://www.meta-phor.eu/) priorities towards robust technology development, a GC–MS ring experiment based upon three complex matrices (melon, broccoli and rice) was launched. All sample preparation, data processing, multivariate analyses and comparisons of major metabolite features followed standardised protocols, identical models of GC (Agilent 6890N) and TOF/MS (Leco Pegasus III) were also employed. In addition comprehensive GC×GC–TOF/MS was compared with 1 dimensional GC–TOF/MS. Comparisons of the paired data from the various laboratories were made with a single data processing and analysis method providing an unbiased assessment of analytical method variants and inter-laboratory reproducibility. A range of processing and statistical methods were also assessed with a single exemplary dataset revealing near equal performance between them. Further investigations of long-term reproducibility are required, though the future generation of global and valid metabolomics databases offers much promise

    Ligand binding to an Allergenic Lipid Transfer Protein Enhances Conformational Flexibility resulting in an Increase in Susceptibility to Gastroduodenal Proteolysis

    Get PDF
    Non-specific lipid transfer proteins (LTPs) are a family of lipid-binding molecules that are widely distributed across flowering plant species, many of which have been identified as allergens. They are highly resistant to simulated gastroduodenal proteolysis, a property that may play a role in determining their allergenicity and it has been suggested that lipid binding may further increase stability to proteolysis. It is demonstrated that LTPs from wheat and peach bind a range of lipids in a variety of conditions, including those found in the gastroduodenal tract. Both LTPs are initially cleaved during gastroduodenal proteolysis at three major sites between residues 39–40, 56–57 and 79–80, with wheat LTP being more resistant to cleavage than its peach ortholog. The susceptibility of wheat LTP to proteolyic cleavage increases significantly upon lipid binding. This enhanced digestibility is likely to be due to the displacement of Tyr79 and surrounding residues from the internal hydrophobic cavity upon ligand binding to the solvent exposed exterior of the LTP, facilitating proteolysis. Such knowledge contributes to our understanding as to how resistance to digestion can be used in allergenicity risk assessment of novel food proteins, including GMOs

    Metabolic Effects of n-3 PUFA as Phospholipids Are Superior to Triglycerides in Mice Fed a High-Fat Diet: Possible Role of Endocannabinoids

    Get PDF
    Background n-3 polyunsaturated fatty acids, namely docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA), reduce the risk of cardiovascular disease and can ameliorate many of obesity-associated disorders. We hypothesised that the latter effect will be more pronounced when DHA/EPA is supplemented as phospholipids rather than as triglycerides. Methodology/Principal Findings In a ‘prevention study’, C57BL/6J mice were fed for 9 weeks on either a corn oil-based high-fat obesogenic diet (cHF; lipids ~35% wt/wt), or cHF-based diets in which corn oil was partially replaced by DHA/EPA, admixed either as phospholipids or triglycerides from marine fish. The reversal of obesity was studied in mice subjected to the preceding cHF-feeding for 4 months. DHA/EPA administered as phospholipids prevented glucose intolerance and tended to reduce obesity better than triglycerides. Lipemia and hepatosteatosis were suppressed more in response to dietary phospholipids, in correlation with better bioavailability of DHA and EPA, and a higher DHA accumulation in the liver, white adipose tissue (WAT), and muscle phospholipids. In dietary obese mice, both DHA/EPA concentrates prevented a further weight gain, reduced plasma lipid levels to a similar extent, and tended to improve glucose tolerance. Importantly, only the phospholipid form reduced plasma insulin and adipocyte hypertrophy, while being more effective in reducing hepatic steatosis and low-grade inflammation of WAT. These beneficial effects were correlated with changes of endocannabinoid metabolome in WAT, where phospholipids reduced 2-arachidonoylglycerol, and were more effective in increasing anti-inflammatory lipids such as N-docosahexaenoylethanolamine. Conclusions/Significance Compared with triglycerides, dietary DHA/EPA administered as phospholipids are superior in preserving a healthy metabolic profile under obesogenic conditions, possibly reflecting better bioavalability and improved modulation of the endocannabinoid system activity in WA

    Current challenges facing the assessment of the allergenic capacity of food allergens in animal models

    Get PDF
    Food allergy is a major health problem of increasing concern. The insufficiency of protein sources for human nutrition in a world with a growing population is also a significant problem. The introduction of new protein sources into the diet, such as newly developed innovative foods or foods produced using new technologies and production processes, insects, algae, duckweed, or agricultural products from third countries, creates the opportunity for development of new food allergies, and this in turn has driven the need to develop test methods capable of characterizing the allergenic potential of novel food proteins. There is no doubt that robust and reliable animal models for the identification and characterization of food allergens would be valuable tools for safety assessment. However, although various animal models have been proposed for this purpose, to date, none have been formally validated as predictive and none are currently suitable to test the allergenic potential of new foods. Here, the design of various animal models are reviewed, including among others considerations of species and strain, diet, route of administration, dose and formulation of the test protein, relevant controls and endpoints measured

    Porcine Ex Vivo intestinal segment model

    No full text
    This chapter describes the use of the porcine ex vivo intestinal segment model. This includes the advantages and disadvantages of the segment model and a detailed description of the isolation and culture as well as the applications of the porcine ex vivo intestinal segment model in practice. Compared to the Ussing chamber (Chap. 24) the porcine ex vivo small intestinal segment model is a relatively simple to use intestinal tissue model. The main difference being that the tissue segment is not mounted in a chamber, but is freely floating in a solution. Therefore the ex vivo intestinal segment model does not distinguish between the apical and basolateral side of the tissue. The intestinal segments can be obtained from various anatomical regions of the small intestine (e.g. duodenum, jejunum, ileum or even the colon) and the segments consist of various cell types (e.g. epithelial cells, paneth cells, goblet cells, enterochromaffin cells and enteroendocrine cells). The intestinal segment model has been shown to be a suitable tool to study compound and location specific effects on the release of gastrointestinal hormones and gastrointestinal metabolism of endocannabinoids and related compounds

    Acute stress reduces wound-induced activation of microbicidal potential of ex vivo isolated human monocyte-derived macrophages

    Get PDF
    BACKGROUND: Psychological stress delays wound healing but the precise underlying mechanisms are unclear. Macrophages play an important role in wound healing, in particular by killing microbes. We hypothesized that (a) acute psychological stress reduces wound-induced activation of microbicidal potential of human monocyte-derived macrophages (HMDM), and (b) that these reductions are modulated by stress hormone release. METHODS: Fourty-one healthy men (mean age 35±13 years) were randomly assigned to either a stress or stress-control group. While the stress group underwent a standardized short-term psychological stress task after catheter-induced wound infliction, stress-controls did not. Catheter insertion was controlled. Assessing the microbicidal potential, we investigated PMA-activated superoxide anion production by HMDM immediately before and 1, 10 and 60 min after stress/rest. Moreover, plasma norepinephrine and epinephrine and salivary cortisol were repeatedly measured. In subsequent in vitro studies, whole blood was incubated with norepinephrine in the presence or absence of phentolamine (norepinephrine blocker) before assessing HMDM microbicidal potential. RESULTS: Compared with stress-controls, HMDM of the stressed subjects displayed decreased superoxide anion-responses after stress (p's <.05). Higher plasma norepinephrine levels statistically mediated lower amounts of superoxide anion-responses (indirect effect 95% CI: 4.14-44.72). Norepinephrine-treated HMDM showed reduced superoxide anion-production (p<.001). This effect was blocked by prior incubation with phentolamine. CONCLUSIONS: Our results suggest that acute psychological stress reduces wound-induced activation of microbicidal potential of HMDM and that this reduction is mediated by norepinephrine. This might have implications for stress-induced impairment in wound healing
    corecore