15 research outputs found
Bumble Bees (Bombus spp) along a Gradient of Increasing Urbanization
BACKGROUND: Bumble bees and other wild bees are important pollinators of wild flowers and several cultivated crop plants, and have declined in diversity and abundance during the last decades. The main cause of the decline is believed to be habitat destruction and fragmentation associated with urbanization and agricultural intensification. Urbanization is a process that involves dramatic and persistent changes of the landscape, increasing the amount of built-up areas while decreasing the amount of green areas. However, urban green areas can also provide suitable alternative habitats for wild bees. METHODOLOGY/PRINCIPAL FINDINGS: We studied bumble bees in allotment gardens, i.e. intensively managed flower rich green areas, along a gradient of urbanization from the inner city of Stockholm towards more rural (periurban) areas. Keeping habitat quality similar along the urbanization gradient allowed us to separate the effect of landscape change (e.g. proportion impervious surface) from variation in habitat quality. Bumble bee diversity (after rarefaction to 25 individuals) decreased with increasing urbanization, from around eight species on sites in more rural areas to between five and six species in urban allotment gardens. Bumble bee abundance and species composition were most affected by qualities related to the management of the allotment areas, such as local flower abundance. The variability in bumble bee visits between allotment gardens was higher in an urban than in a periurban context, particularly among small and long-tongued bumble bee species. CONCLUSIONS/SIGNIFICANCE: Our results suggest that allotment gardens and other urban green areas can serve as important alternatives to natural habitats for many bumble bee species, but that the surrounding urban landscape influences how many species that will be present. The higher variability in abundance of certain species in the most urban areas may indicate a weaker reliability of the ecosystem service pollination in areas strongly influenced by human activity
Food for pollinators: quantifying the nectar and pollen resources of urban flower meadows
Planted meadows are increasingly used to improve the biodiversity and aesthetic amenity value of urban areas. Although many ‘pollinator-friendly’ seed mixes are available, the floral resources these provide to flower-visiting insects, and how these change through time, are largely unknown. Such data are necessary to compare the resources provided by alternative meadow seed mixes to each other and to other flowering habitats. We used quantitative surveys of over 2 million flowers to estimate the nectar and pollen resources offered by two exemplar commercial seed mixes (one annual, one perennial) and associated weeds grown as 300m2 meadows across four UK cities, sampled at six time points between May and September 2013. Nectar sugar and pollen rewards per flower varied widely across 65 species surveyed, with native British weed species (including dandelion, Taraxacum agg.) contributing the top five nectar producers and two of the top ten pollen producers. Seed mix species yielding the highest rewards per flower included Leontodon hispidus, Centaurea cyanus and C. nigra for nectar, and Papaver rhoeas, Eschscholzia californica and Malva moschata for pollen. Perennial meadows produced up to 20x more nectar and up to 6x more pollen than annual meadows, which in turn produced far more than amenity grassland controls. Perennial meadows produced resources earlier in the year than annual meadows, but both seed mixes delivered very low resource levels early in the year and these were provided almost entirely by native weeds. Pollen volume per flower is well predicted statistically by floral morphology, and nectar sugar mass and pollen volume per unit area are correlated with flower counts, raising the possibility that resource levels can be estimated for species or habitats where they cannot be measured directly. Our approach does not incorporate resource quality information (for example, pollen protein or essential amino acid content), but can easily do so when suitable data exist. Our approach should inform the design of new seed mixes to ensure continuity in floral resource availability throughout the year, and to identify suitable species to fill resource gaps in established mixes
Exploring the Potential of ToxCast Data in Supporting Read-across for Evaluation of Food Chemical Safety
The intention of this study was to determine the utility of high throughput (HTS) screening data, as exemplified by ToxCast and Tox21, for application in toxicological read-across in food-relevant chemicals. Key questions were addressed on the extent to which the HTS data could provide information enabling 1) the elucidation of underlying bioactivities associated with apical toxicological outcomes, 2) the closing of existing toxicological data gaps, and 3) the definition of the boundaries of chemical space across which bioactivity could reliably be extrapolated. Results revealed that many biological targets apparently activated within the chemical groupings lack at this time validated toxicity pathway associations. Therefore, as means of providing proof-of-principle, a comparatively well-characterised endpoint – oestrogenicity – was selected for evaluation. This was facilitated through preparation of two exploratory case studies, focusing upon groupings of paraben-gallates and pyranone-type compounds(notably flavonoids). Within both, HTS data was seen to reflect oestrogenic potencies in a manner which broadly corresponded to established structure-activity group relationships – parabens and flavonoids displaying greater oestrogen receptor affinity than benzoate esters and alternative pyranone-containing molecules respectively. As such, utility in identification of out-of-domain compounds was demonstrated, indicating potential for application in addressing point 3) as detailed above