97 research outputs found

    Evaluation of a new Rapid Antimicrobial Susceptibility system for Gram-negative and Gram-positive bloodstream infections: speed and accuracy of Alfred 60AST.

    Get PDF
    BACKGROUND: Blood stream infections (BSIs) are a major cause of morbidity and mortality. The time from taking blood cultures to obtain results of antibiotic sensitivity can be up to five days which impacts patient care. The Alfred 60 AST™ can reduce laboratory time from positive culture bottle to susceptibility results from 16 to 25 h to 5-6 h, transforming patient care. To evaluate the diagnostic accuracy of a rapid antimicrobial susceptibility system, the Alfred 60 AST™, in clinical isolates from patients with BSIs and confirm time to results. 301 Gram-negative and 86 Gram-positive isolates were analysed directly from positive blood culture bottles following Gram staining. Antimicrobial susceptibility results and time-to-results obtained by rapid Alfred 60 AST system and BD Phoenix were compared . RESULTS: A total of 2196 antimicrobial susceptibility test results (AST) were performed: 1863 Gram-negative and 333 Gram-positive. AST categorical agreement (CA) for Alfred 60 AST™ was 95% (1772/1863) for Gram-negative and 89% (295/333) for Gram-positive isolates. Gram-negative CA: ampicillin 96% (290/301); ciprofloxacin 95% (283/297); ceftriaxone 96% (75/78); meropenem 97% (288/297); piperacillin-tazobactam 95% (280/295); gentamicin 94% (279/297) and amikacin 93% (277/298). The median time to susceptibility results from blood culture flagging positive was 6.3 h vs 20 h (p < 0.01) for Alfred system vs BD Phoenix™. CONCLUSION: Alfred 60 AST system greatly reduced time to antimicrobial susceptibility results in Gram-negative and Gram-positive BSIs with good performance and cost, particularly for Gram-negative bacteraemia

    Membranes by the Numbers

    Get PDF
    Many of the most important processes in cells take place on and across membranes. With the rise of an impressive array of powerful quantitative methods for characterizing these membranes, it is an opportune time to reflect on the structure and function of membranes from the point of view of biological numeracy. To that end, in this article, I review the quantitative parameters that characterize the mechanical, electrical and transport properties of membranes and carry out a number of corresponding order of magnitude estimates that help us understand the values of those parameters.Comment: 27 pages, 12 figure

    A comparative study of different model families for the constitutive simulation of viscous clays

    Get PDF
    The simulation of the viscous behavior of some clays is of high importance in many geotechnical problems. The literature offers a vast amount of constitutive models able to simulate the rate dependence observed on these materials. Although most of thesemodels are calibrated to very similar experimental observations and share similar definitions ofmaterial parameters, some discrepancies of their response have been detected, which are related to their mathematical formulations. In this work, the causes of these discrepancies are carefully studied. To that end, four different model families are analyzed, namely, nonstationary flow surface (NSFS) models, viscoplasticity with overstress function (OVP), viscoplasticity with Norton\u27s power law (NVP), and visco-hypoplasticity (VHP). For the sake of a fair comparison, single constitutive models using the same set of material parameters, and following other requirements, are developed for each model family. Numerical implementations of the four resulting models are performed. Their response at different tests are carefully analyzed through simulation examples and direct examination of their constitutive equations. The set includes some basic tests at isotropic stress states and others as responses envelopes, undrained creep rupture, and an oedometer test with loading, unloading-reloading, creep, and relaxation. The article is concluded with some remarks about the observed discrepancies of these model families

    Wild Skylarks Seasonally Modulate Energy Budgets but Maintain Energetically Costly Inflammatory Immune Responses throughout the Annual Cycle

    Get PDF
    A central hypothesis of ecological immunology is that immune defences are traded off against competing physiological and behavioural processes. During energetically demanding periods, birds are predicted to switch from expensive inflammatory responses to less costly immune responses. Acute phase responses (APRs) are a particularly costly form of immune defence, and, hence, seasonal modulations in APRs are expected. Yet, hypotheses about APR modulation remain untested in free-living organisms throughout a complete annual cycle. We studied seasonal modulations in the APRs and in the energy budgets of skylarks Alauda arvensis, a partial migrant bird from temperate zones that experiences substantial ecological changes during its annual cycle. We characterized throughout the annual cycle changes in their energy budgets by measuring basal metabolic rate (BMR) and body mass. We quantified APRs by measuring the effects of a lipopolysaccharide injection on metabolic rate, body mass, body temperature, and concentrations of glucose and ketone. Body mass and BMR were lowest during breeding, highest during winter and intermediate during spring migration, moult and autumn migration. Despite this variation in energy budgets, the magnitude of the APR, as measured by all variables, was similar in all annual cycle stages. Thus, while we find evidence that some annual cycle stages are relatively more energetically constrained, we find no support for the hypothesis that during these annual cycle stages birds compromise an immune defence that is itself energetically costly. We suggest that the ability to mount an APR may be so essential to survival in every annual cycle stage that skylarks do not trade off this costly form of defence with other annual cycle demands

    Soft Matrices Suppress Cooperative Behaviors among Receptor-Ligand Bonds in Cell Adhesion

    Get PDF
    The fact that biological tissues are stable over prolonged periods of time while individual receptor-ligand bonds only have limited lifetime underscores the critical importance of cooperative behaviors of multiple molecular bonds, in particular the competition between the rate of rupture of closed bonds (death rate) and the rate of rebinding of open bonds (birth rate) in a bond cluster. We have recently shown that soft matrices can greatly increase the death rate in a bond cluster by inducing severe stress concentration near the adhesion edges. In the present paper, we report a more striking effect that, irrespective of stress concentration, soft matrices also suppress the birth rate in a bond cluster by increasing the local separation distance between open bonds. This is shown by theoretical analysis as well as Monte Carlo simulations based on a stochastic-elasticity model in which stochastic descriptions of molecular bonds and elastic descriptions of interfacial force/separation are unified in a single modeling framework. Our findings not only are important for understanding the role of elastic matrices in cell adhesion, but also have general implications on adhesion between soft materials

    Search for New Physics in e mu X Data at D0 Using Sleuth: A Quasi-Model-Independent Search Strategy for New Physics

    Get PDF
    We present a quasi-model-independent search for the physics responsible for electroweak symmetry breaking. We define final states to be studied, and construct a rule that identifies a set of relevant variables for any particular final state. A new algorithm ("Sleuth") searches for regions of excess in those variables and quantifies the significance of any detected excess. After demonstrating the sensitivity of the method, we apply it to the semi-inclusive channel e mu X collected in 108 pb^-1 of ppbar collisions at sqrt(s) = 1.8 TeV at the D0 experiment during 1992-1996 at the Fermilab Tevatron. We find no evidence of new high p_T physics in this sample.Comment: 23 pages, 12 figures. Submitted to Physical Review

    Ratio of the Isolated Photon Cross Sections at \sqrt{s} = 630 and 1800 GeV

    Get PDF
    The inclusive cross section for production of isolated photons has been measured in \pbarp collisions at s=630\sqrt{s} = 630 GeV with the \D0 detector at the Fermilab Tevatron Collider. The photons span a transverse energy (ETE_T) range from 7-49 GeV and have pseudorapidity η<2.5|\eta| < 2.5. This measurement is combined with to previous \D0 result at s=1800\sqrt{s} = 1800 GeV to form a ratio of the cross sections. Comparison of next-to-leading order QCD with the measured cross section at 630 GeV and ratio of cross sections show satisfactory agreement in most of the ETE_T range.Comment: 7 pages. Published in Phys. Rev. Lett. 87, 251805, (2001

    Ebola Virion Attachment and Entry into Human Macrophages Profoundly Effects Early Cellular Gene Expression

    Get PDF
    Zaire ebolavirus (ZEBOV) infections are associated with high lethality in primates. ZEBOV primarily targets mononuclear phagocytes, which are activated upon infection and secrete mediators believed to trigger initial stages of pathogenesis. The characterization of the responses of target cells to ZEBOV infection may therefore not only further understanding of pathogenesis but also suggest possible points of therapeutic intervention. Gene expression profiles of primary human macrophages exposed to ZEBOV were determined using DNA microarrays and quantitative PCR to gain insight into the cellular response immediately after cell entry. Significant changes in mRNA concentrations encoding for 88 cellular proteins were observed. Most of these proteins have not yet been implicated in ZEBOV infection. Some, however, are inflammatory mediators known to be elevated during the acute phase of disease in the blood of ZEBOV-infected humans. Interestingly, the cellular response occurred within the first hour of Ebola virion exposure, i.e. prior to virus gene expression. This observation supports the hypothesis that virion binding or entry mediated by the spike glycoprotein (GP1,2) is the primary stimulus for an initial response. Indeed, ZEBOV virions, LPS, and virus-like particles consisting of only the ZEBOV matrix protein VP40 and GP1,2 (VLPVP40-GP) triggered comparable responses in macrophages, including pro-inflammatory and pro-apoptotic signals. In contrast, VLPVP40 (particles lacking GP1,2) caused an aberrant response. This suggests that GP1,2 binding to macrophages plays an important role in the immediate cellular response
    corecore