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Abstract

Background: MicroRNAs (miRNAs) play multiple roles in tumor biology. Interestingly, reports from multiple groups
suggest that miRNA targets may be coupled through competitive stoichiometric sequestration. Specifically,
computational models predicted and experimental assays confirmed that miRNA activity is dependent on miRNA
target abundance, and consequently, changes in the abundance of some miRNA targets lead to changes to the
regulation and abundance of their other targets. The resulting indirect regulatory influence between miRNA targets
resembles competition and has been dubbed competitive endogenous RNA (ceRNA). Recent studies have
questioned the physiological relevance of ceRNA interactions, our ability to accurately predict these interactions,
and the number of genes that are impacted by ceRNA interactions in specific cellular contexts.

Results: To address these concerns, we reverse engineered ceRNA networks (ceRNETs) in breast and prostate
adenocarcinomas using context-specific TCGA profiles, and tested whether ceRNA interactions can predict the
effects of RNAi-mediated gene silencing perturbations in PC3 and MCF7 cells._ENREF_22 Our results, based on tests
of thousands of inferred ceRNA interactions that are predicted to alter hundreds of cancer genes in each of the
two tumor contexts, confirmed statistically significant effects for half of the predicted targets.

Conclusions: Our results suggest that the expression of a significant fraction of cancer genes may be regulated by
ceRNA interactions in each of the two tumor contexts.
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Background
Identifying regulatory interactions that mediate the effects
of genomic alterations is a necessary step for interpreting
the function of trans-acting variants in complex diseases,
including cancer [1, 2]. Among these, miRNA dysregula-
tion, arising from alterations targeting their transcriptional
[3] or biogenesis regulators [4], plays an established role in
tumorigenesis [5]. Recently, multiple groups have reported
on gene products that modulate miRNA activity, includ-
ing RNA species that can alter the abundance of other

RNAs in trans through ceRNA interactions [6–17]. These
studies show that targets of the same miRNAs are
coupled, and that up- or down-regulation of one target
may alter the expression of other cognate targets by
sequestering or releasing their shared miRNA molecules,
respectively (Fig. 1a).
Since the discovery of ceRNA regulation in human cells

[9, 10] multiple reports questioned the physiological rele-
vance of ceRNA interactions, researcher’s ability to predict
them, and the number of genes that are affected in each
context [18–20]. To address these concerns, we proceeded
to test genome-wide ceRNA predictions made by the
information-theoretic Hermes algorithm [7]. For the sake
of generality, we performed this analysis in two distinct
tumor contexts, using a set of large-scale and high-
throughput shRNA-mediated perturbation assays in
model cell lines assembled by the Library of Integrated
Network-based Cellular Signatures (LINCS) [21]. Specific-
ally, we inferred ceRNETs using TCGA profiles of prostate
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and breast adenocarcinomas and tested them using a
LINCS compendium of perturbation profiles, representa-
tive of the shRNA-mediated silencing of >3000 genes in
PC3 and MCF7 cells [21–23]. We propose that the high
validation rates of these assays can inform on the accuracy
of computational predictions, and will help estimate the
number of genes that are modulated by ceRNA in repre-
sentative tumor contexts.

Methods
We begin by describing our ceRNA-prediction method,
followed by a description of LINCS data used to test the
predictive ability of inferred ceRNA interactions in PC3
and MCF7 cells. We then describe our efforts to test
whether systematic biases affect our test results.

Inference method
We used an extended version of the Hermes algorithm,
which we had previously introduced to discover glioma-
specific ceRNAs [7], to systematically discover ceRNA
interactions in prostate (PRAD) and breast (BRCA)

adenocarcinomas, using matched miRNA and mRNA
expression profiles of the corresponding TCGA cohorts.
While the ceRNA inference component of the algorithm
was unchanged, the new algorithm also supports the
identification of the specific miRNAs that mediate each
interaction (mediators); these miRNAs are predicted to
target both mRNAs in a ceRNA interaction, and their
activity is affected (modulated) by target mRNA
abundance. This extension is useful for generating more
specific hypotheses for future functional testing.
We note that Hermes-inferred ceRNA interactions are

independent of the co-expression of coupled mRNAs; ra-
ther, they are based on assessing whether the abundance of
one mRNA species modulates abundance of the other (and
vice-versa), via their shared miRNA program. This assess-
ment is based on the statistical significance of the mutual
information between the abundance of one mRNA species
and one or more miRNA, given the abundance of another
mRNA targeted by the same miRNAs. We note that a ma-
jority of predicted ceRNA interactions involved mRNAs
that are not significantly co-expressed, and co-expression

A

B C

Fig. 1 Model and validation of miRNA-target coupling. a RNAs up and down regulate one another by titrating shared miRNA regulators. Up regulation of
RNA B sequesters shared miRNAs, leading to weaker miRNA-mediated repression of RNA A transcripts and its consequent up regulation. b In order to
validate predicted interaction networks on a large scale, we evaluated whether interactions are predictive of global mRNA expression changes following
shRNA perturbations using LINCS. A selection of known cancer genes in breast cancer and c prostate adenocarcinomas were effectively repressed following
silencing of their predicted ceRNA regulators in MCF7 and PC3, respectively. Red bars represent average fold changes of a target ceRNA relative to
non-targeting controls (gray bars) following silencing of its predicted ceRNA regulators at select time points; see Figs. 2 and 3 for details. Data are
represented as mean ± SEM
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did not implicate genes as ceRNA interacting partners. This
is contrasted with MuTaME [11], which uses co-expression
between ceRNAs to predict interactions, and cefinder [24],
which is based on sequence analysis alone.
Hermes predicts ceRNA-coupling between two mRNAs

based on the relative size of their shared miRNA regula-
tory program, as predicted by the Cupid algorithm [7],
and the conditional mutual information between one of
the mRNAs and each of their shared miRNAs, given the
other mRNA. Namely, given genes Ti and Tj, and the set
of miRNAs that regulate them ΠmiR(Ti) and ΠmiR(Tj), their
shared program is identified by taking the intersection
ΠmiR(Ti;Tj) =ΠmiR(Ti) ∩ΠmiR(Tj). First, Hermes tests that
the size of ΠmiR(Ti;Tj) relative to the sizes of the individual
programs is statistically significant at FDR < 0.01 by
Fisher’s exact test (FET). Then, Hermes evaluates the stat-
istical significance pkij (p-value) of the test CMI[miRk;
Ti,|Tj] >MI[miRk;Ti], where CMI and MI stand for
conditional mutual information and mutual information
respectively, and the variables indicate the expression of
the corresponding RNA species [7].
The CMI is estimated using an adaptive partitioning

algorithm [25] by first iteratively partitioning the 3-
dimentional expression space evenly into 8 partitions
per iteration until partitions are balanced (p > 0.05 by
Chi-squared test), and then summing up CMI across
partitions. P-values for each triplet are computed based
on a null-hypothesis where the candidate modulator’s
expression (Tj) is shuffled 1000 times, thus preserving
the pairwise mutual information between miRNA and
target. Final significance across the entire set of miRNA
mediators is computed using Fisher’s method to inte-
grate both regulatory directions, i.e. Ti affecting miRk

regulation of Tj as well as Tj affecting miRk regulation of
Tj, for all miRNA mediators ΠmiR(Ti; Tj). Specifically,

X2 ¼ −2
XN

k¼1
ln pkij; ; pkji
� �

is computed and used to

estimate a significance p-value for the entire program.
Note that X2 follows a Chi-square distribution, with 4N
degrees of freedom, where N is the number of miRNAs
in the shared program. Finally, only predictions passing
significance of FDR < 1E-3 are selected. Note that
selected predictions by Hermes have been previously
validated in glioblastoma cell lines [7]. In addition, the
presence of transcripts with alternative 3’ UTRs is
expected to reduce the sensitivity of prediction.
In order to identify miRNA mediators in addition to

ceRNA interactions, we modified Hermes to perform
greedy addition of miRNA mediators and to optimize the
combined p-value for each predicted interaction. Namely,
for each candidate interaction, we searched for the
minimum combined p-value through the greedy forward
inclusion of individual miRNAs. Additional miRNAs were
included as candidate mediators only if they improve the

joint p-value, as estimated using Fisher’s method. MiRNAs
failing to improve the joint p-value lack functional
evidence for mediating the interaction and were thus
excluded from the analysis.

The LINCS database and its analysis
The LINCS database includes Luminex-based multi-
plexed assays to measure the expression of 1171 genes
(L1000) in response to a variety of perturbations. Se-
lected perturbations include shRNA-mediated silencing
(in triplicate) of 1845 genes participating in ceRNA in-
teractions, in both BRCA (MCF7) and PRAD (PC3) cell
lines (Additional file 1: Tables S3 and S4). Gene expression
was measured using the L1000 assay at two time points
(96 and 144 h), following each perturbation. To achieve
adequate statistical power, we limited our tests to genes
with six or more silenced Hermes-inferred ceRNA regula-
tors. In total, we evaluated predicted ceRNA targeting of
405 genes (of which 365 were validated at 96 h and 398 at
144 h) in MCF7 cells and 419 genes (of which 363 were
validated at 96 h and 376 at 144 h) in PC3 cells.
In LINCS perturbation assays, while some data points

are missing due to quality control metrics, the expression
of most genes was profiled in triplicates at both 96 and
144 h after shRNA transduction. On average, 3.3 unique
shRNA hairpins were used to silence each of 1845 breast
and prostate oncogenes and tumor suppressors (cancer
genes) in our networks. By definition, for each interaction,
the ceRNA regulator is the one targeted by the shRNA
perturbation and the ceRNA target is the one profiled
after silencing to determine any interaction mediated
change. Fold-change for each target, in response to the
silencing of one of its regulators, was estimated by aver-
aging across all shRNA hairpins targeting this regulator.
The identities of the specific shRNA hairpins, regulators,
and targets are provided in Additional file 1: Table S5.
In total, 9055 and 9800 predicted BRCA interactions

were tested in MCF7 cells at 96 and 144 h after shRNA-
mediated silencing, respectively. Similarly, 8858 and
10,213 predicted PRAD interactions were tested in PC3
cells at 96 and 144 h after silencing, respectively. Due to
the small number of replicates, it is not possible to
evaluate the statistical significance of individual predicted
interactions. Instead, we evaluated the average effects of
all ceRNA regulators in the list of silenced genes on the
expression of a given ceRNA target. Average fold changes
and associated standard errors were computed by compar-
ing to non-targeting controls, at each time point, and in
each relevant cellular context. Additional file 1: Tables S3
and S4 provide mRNA expression fold change measure-
ments following shRNA-mediated perturbation of breast
and prostate cancer genes in MCF7 and PC3, respectively,
based on the LINCS perturbation assays.
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The size of this dataset allows for rigorous controls that
avoid bias due to gene expression variability and off-target
effects of RNAi-mediated perturbations. To estimate the
statistical significance of target responses to gene perturba-
tions, we examined fold change in target expression follow-
ing silencing of its predicted regulator, as well as the effect
of silencing a specific regulator across all of its inferred tar-
gets. For the latter, we associated each candidate target with
a rank vector representing its percentile ranked relative
fold-change at a specific time point following each gene
silencing perturbation. We then ranked expression fold-
changes of all profiled genes at a specific time point follow-
ing silencing of any given gene and compared ranks across
different perturbations. In this way, each candidate target
was associated with a rank vector, representing its relative
fold-change following each perturbation. Considering each
target in isolation, we compared its response to perturba-
tions of its predicted regulators as well as its response to
shRNA-mediated silencing of other genes. Mann–Whitney
U test was used to determine whether the rank of a target
following silencing of its predicted regulators was lower
than that following silencing of other genes.
Specifically, Fold change measurements for up to 1171

genes in response to a given perturbation allowed rank-
ing of the profiled genes based on the strength of the re-
sponse. First, we assigned significance to the response of
a gene to the silencing of its predicted regulators by
comparing the set of its scores associated with perturba-
tions of predicted regulators to the scores of all other
genes, i.e. the gene’s ranks following silencing of its pre-
dicted regulators vs. its ranks following silencing of all
other genes. Then we used a Mann–Whitney test to de-
termine whether the ranks of a target after silencing of
its regulators was significantly lower than its ranks fol-
lowing silencing of all other genes. Given the number of
gene perturbations (up to 1171 gene silencing experi-
ments), the two sets of ranks were expected to be nor-
mally distributed and can be approximated by a z-score
and a corresponding p value. On average, for each target
gene, the number of perturbations targeting its regula-
tors was 1% of the total number of perturbations tested.
Standard error was computed using standard error

propagation techniques, i.e., the standard error was esti-

mated as

ffiffiffiffiffiffiffiffiffiffiffiffiffiXN

i¼1

q
σ2i , where σi is the standard deviation of

each individual silencing experiment and N is the number
of tested regulators. When comparing responses of
ceRNA targets to controls, as described in Fig. 1b-c, we
randomly assembled control sets composed of as many
non-ceRNA regulators as the number of ceRNA regula-
tors for each target. We then calculated the average fold
change and the error-propagated standard error after si-
lencing each of non-ceRNA regulator and estimated the
significance of fold changes using a two-tailed rank-sum

test. This process was repeated 1000 times to obtain
averaged fold changes, propagated standard errors, and
averaged p values based on the negative controls.

Accounting for systematic biases in LINCS analysis
To ensure that comparisons of target responses to
predicted regulators and non-regulators are free of
bias, we repeated the analysis presented for MCF7
and PC3 after controlling several properties. These
included re-analyses after (1) eliminating outlier re-
sponders, i.e. ceRNA interactions associated with the
most significant ceRNA-validating responses; (2) elim-
inating shRNAs that can act as human miRNAs [26]
and produce off-target effects; and after accounting
for (3) 3’ UTR length and (4) CG content, (5) RMA-
normalized expression, (6) expression variability, and
(7) expression correlation with the predicted target.
Results are presented in Additional file 2: Figure S1
and suggest that accounting for these potential biases
had relatively little effect on the number of targets
that were found to be significantly downregulated by
silencing their predicted regulators. We note that the
average gene expression change across all interactions
in LINCS is 1.0.
When eliminating outliers we removed predicted

ceRNA interactions where the inducing effects were
greater than Q1-1.5*STD by percentile rank from the
analysis. By discarding the strongest ceRNA-like effects,
we eliminated any chance that the test may be biased by
a few outlier events. To eliminate potential off-target ef-
fects caused by miRNA-like behavior, we eliminated all
shRNAs whose 7-base seed subsequence (2nd to 8th
position) matched miRBase human miRNA seeds. To
study the effects 3’ UTR length and composition, we
binned all potential ceRNA regulators including
predicted regulators and controls; 3’ UTRs were binned
by either length using 25-base offsets or by GC content
in 0.001 intervals. Length and content were studied
independently. When comparing ceRNA interactions to
non-interactions (controls), both were taken from
corresponding bins. To study the effects of expression
magnitude, we averaged MCF7 and PC3 gene RMA-
normalized expression across 213 MCF7 and 64 PC3
experiments deposited in Gene Expression Atlas [27],
binned at 0.01 intervals. Expression variability describes
median absolute deviation, binned at 0.001 intervals.
Expression correlation was measured using Spearman
correlation with the expression profile of the target,
binned at 0.01 intervals.

Integrative Statistical Evaluation
To evaluate the significance of all tested interactions at
each time point in both cell lines, we used a one-sample
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Kolmogorov-Smirnov test [28]. This normality test eval-
uates whether z scores obtained from fold-change rank
comparisons follow a standard normal distribution with
μ = 0 and σ = 1, thus assigning significance against the
null hypothesis that z scores are selected at random. We
ranked targets based on z scores and calculated the
expected p value when assuming that z scores were
drawn from a standard normal distribution. The result is
p-value estimates for each time point for each of the two
cell lines, taken in aggregate across all tested interac-
tions. We did not aggregate across time points and cell
lines to avoid statistical dependence that is sure to result
from using the same shRNAs in multiple assays.

Results
We first describe ceRNA regulatory networks that were
inferred using miRNA and mRNA expression profiles of
breast and prostate adenocarcinomas. These networks
were used to predict secondary effects by shRNAs that
target predicted ceRNA regulators of cancer genes in
both contexts. Taken as a whole, we then evaluated
whether ceRNA interactions can predict the effects of
multiple shRNAs on cancer genes. Having demonstrated
that ceRNA interactions are predictive of shRNA effects
based on LINCS data, we finally compared the predictive
abilities of ceRNA interactions predicted by Hermes,
MuTaME, and cefinder.

Inferred ceRNETs
We used Hermes (see Methods) to construct ceR-
NETs using matched TCGA gene and miRNA expres-
sion profiles of breast (BRCA) and prostate (PRAD)
adenocarcinomas. For PRAD, this included data from
140 samples, representing 23,614 genes and 367 miR-
NAs [29]; while for BRCA, we used 207 samples,
representing 18,748 genes and 524 miRNAs [30]. Pre-
dicted ceRNA networks included 476,456 and 447,011
interactions, for the PRAD and BRCA ceRNETs,
respectively; see Tables S1-2, where each ceRNA
interaction is defined by two RNAs and the miRNAs
that couple them. We note that by the time of the
article’s submission the number of publically available
samples with both miRNA and mRNA expression
profiles by TCGA has increased; however, the number
of samples we used is sufficient for ceRNA prediction
by Hermes.
Due to their size, experimental validation of reverse-

engineered networks is often challenging. Consequently,
validation is generally performed only on a handful of
interactions [31, 32] or on small subnetworks [33, 34].
To validate our inferred interactions on a more realistic
scale, we used a large collection of shRNA-mediated
silencing assays in the Library of Integrated Network-
based Cellular Signatures (LINCS) database [21].

Predicted cancer genes are affected by silencing of their
ceRNA regulators
Figure 1b-c describe the average response of a target
at a given time point to silencing of all of its tested
regulators. Figures 2 and 3 show the responses of tar-
gets described in Fig. 1b-c to perturbations of both
predicted regulators and non-regulators in MCF7 and
PC3. For perturbations of regulators, we provided p
values that describe the significance of target re-
sponses. An evaluation of all individual interactions
and overall responses of each target in both networks
is provided in Additional file 1: Table S5.
We compared fold changes for every ceRNA target

following silencing of its predicted ceRNA regulators to
controls, as reported in Methods. Results from these as-
says confirmed that Hermes predictions are highly
enriched in bona fide ceRNA interactions in both BRCA
and PRAD and that these interactions may affect the ac-
tivity of key cancer genes. For instance, 10 established
driver cancer genes in BRCA (BCL2, CCND1, CCNE2,
CDC42, CDKN1B, EGR1, FOS, HMGA2, NRAS and
RB1) and PRAD (BCL2, CDKN1B, EGR1, HIF1A, JUN,
KIT, MAP4K4, MYC, RB1 and STAT3) were significantly
downregulated when their Hermes-inferred ceRNAs
were silenced but were unaffected by silencing of nega-
tive control genes (i.e., genes not predicted as their cog-
nate ceRNA regulators); see Figs. 1b-c, 2 and 3.
In total, 69 and 62% of Hermes-inferred targets were

significantly down-regulated (p < 0.05 by U test) follow-
ing shRNA-mediated silencing of their Hermes-inferred
ceRNAs in MCF7 and PC3, respectively, at least at one
time point; see Fig. 4 and Additional file 1: Table S5.
Fold-change and p-values were measured by comparing
average differential expression of a gene following
shRNA-mediated silencing of its inferred ceRNA regula-
tors, compared to silencing of all other genes not pre-
dicted to be ceRNA targets of these regulators. This
guaranteed the most unbiased selection of negative con-
trol assays possible. Moreover, our efforts to control for
specific effects that could potentially bias this compari-
son—including shRNA off-target effects and outliers—-
reaffirmed analysis results.

Integrative Statistical Evaluation
To evaluate the significance of all tested interactions
at each time point in both cell lines, we used a one-
sample Kolmogorov-Smirnov test and described in
Methods. Our results suggested that ceRNA interac-
tions, even when disregarding all other regulatory
modalities, are highly predictive of assay observa-
tions: p < 2e-96 and p < 1e-123 for MCF7 at 96H and
144H, and p < 6e-84 and p < 3e-96 for PC3 at 96H
and 144H, respectively. In MCF7 cells, of the 365
and 398 genes that could be tested at 96 and 144 h
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A B

Fig. 2 Target response to perturbations of both predicted ceRNA regulators and non-regulators in MCF7. For each ceRNA target described in Fig. 1b,
we plot responses to shRNA-mediated silencing of a predicted ceRNA regulators and b genes not predicted to regulate each ceRNA target in MCF7.
Each plot gives the profiling time point after shRNA transfection, and the total number of shRNA targets considered. For silencing of regulators, we
provide p values that describe the significance of target responses shown in panel a relative to the response to silencing of other genes shown in
panel b. Also provided, adjunct to each scatter plot, are box plots that describe the mean, median, 25 and 75 percentile of the distributions of ranks of
the responses of this target relative to all profiled responses to shRNA perturbations
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following silencing of their predicted ceRNA regula-
tors, respectively, the vast majority (i.e., 337 and
363) were downregulated. Of these, 181 and 202
were significantly downregulated (p < 0.05); only 28
and 35 genes were upregulated, none significantly.

Similarly, for PC3 cells, 319/363 and 336/376 were
downregulated (at 96 and 144 h, respectively). Of
these, 170 and 174 were significantly downregulated
(p < 0.05); only 44 and 40 were upregulated, none
significantly.

A B

Fig. 3 Target response to perturbations of both predicted ceRNA regulators and non-regulators in PC3. Analogous to Fig. 2, for each ceRNA
target described in Fig. 1c, we plot responses to shRNA-mediated silencing of a predicted ceRNA regulators and b genes not predicted to
regulate each ceRNA target in PRAD
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In total, 342 tested ceRNA targets were significantly
downregulated in at least one assay, at an average of
more than 2 assays per target, while none were
significantly up-regulated (p < 0.05). In aggregate, down-
regulation of predicted ceRNA targets was highly signifi-
cant (p ≤ 6.0E-84 for each time point and cell line). This
analysis constitutes the largest scale validation of a regu-
latory network to date and suggests that hundreds of
cancer genes may be altered through competition for
miRNA regulation in BRCA and PRAD. Critically, these
results are not merely a reflection of intrinsic coupling
of gene expression in cellular systems. Indeed, equivalent
numbers of interactions selected at random from non-
predicted ceRNAs produced no statistically significant
trends. In total, nearly 50% (50% in MCF7 and 47% in
PC3) of all predicted targets were significantly downreg-
ulated by shRNA-mediated silencing of their predicted
ceRNA. We note that when considering individual inter-
actions, 31% of targets were downregulated following si-
lencing of their predicted regulators.

Comparisons with other ceRNA prediction methods
To test whether Hermes predictions are uniquely
enriched for down regulation in LINCS data, we used

LINCS assays to test predictions by MuTaME [11]
and cefinder [24]; note that MuTaME is context
specific and integrates sequence patterns and co-
expression between candidate ceRNA to make predic-
tions, while cefinder makes predictions based on
sequence information alone. Our results suggest that
while Hermes significantly outperformed both
methods (Additional file 3: Figure S2), MuTaME and
cefinder predictions are significantly enriched in
downregulated genes following shRNA-mediated
silencing of their regulators.
We used all available predictions by cefinder and

MuTaME for our comparison. cefinder scores ceRNA
interactions based on the number of miRNA binding
sites from the common miRNA program between the
ceRNA target X and ceRNA regulator Y; only the top
50 ceRNA regulators are predicted for each ceRNA
target, and Y- > X doesn’t imply X- > Y because X
might not be in the top 50 genes of Y. MuTaME
provided 136 PTEN-regulating ceRNAs (of which 135
were targeted by LINCS) and the standalone program
is not downloadable. Ala et al. used MuTaME to
predict DICER1-regulating ceRNAs [35], but only 4
genes that were predicted to interact with DICER1

Fig. 4 Statistical evaluation. We plot p-values and average fold changes of target ceRNA expression following silencing of their predicted regulators,
compared to silencing of all other genes in both BRCA and PRAD ceRNETs, at two profiling time points in a MCF7 and b PC3 cells. Results for targets
with six or more perturbed ceRNA regulators are shown. To estimate p values for each ceRNA target, we collected all tested regulators and compared
average fold-change responses following silencing of inferred ceRNA regulators (FCpos) vs. silencing of all other genes (FCneg) in the network; see Figs. 1,
2 and 3 for illustrative example cancer genes. In total, 91% and 92% (50% and 47% significantly, at p < 0.05 by U test) of ceRNA targets, predicted in
breast and prostate cancer, were downregulated in response to ceRNA regulator silencing in MCF7 and PC3, respectively. In total, 342 tested ceRNA
targets were significantly down-regulated and none were significantly up-regulated. Comparing the number of targets with significantly low FCpos and
FCneg fold changes by Mann–Whitney U-test suggests an FDR < 0.01 for overall network validation
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were targeted in LINCS. Consequently, we chose to
compare the three methods when predicting PTEN
regulators and targets (predictions by MuTaME are
bidirectional), but genome-wide comparisons were
made between Hermes and cefinder only. The com-
parisons suggest that Hermes outperforms MuTaME
and cefinder when predicting PTEN targets and
regulators (Additional file 3: Figure S2), and it signifi-
cantly outperforms cefinder on genome-wide tests
(Additional file 4: Figure S3).

Discussion
We proposed and re-implemented Hermes, a highly-
selective context-specific method for predicting
ceRNA interactions [7]. When analyzing TCGA pro-
files of prostate [36] and breast [37] adenocarcinomas
Hermes inferred nearly 500 K ceRNA interactions for
each of the two tumor types.
In total, Hermes produced expression-based evidence

for the regulation of over 5000 genes by ceRNA interac-
tions. Conclusions from perturbation assays that tested
hundreds of these genes as potential targets are that half
of them are dysregulated by targeting their Hermes-
inferred ceRNA regulators. Put together, the results
suggest that thousands of genes can be dysregulated by
ceRNA interactions in each of the two contexts through
exogenous perturbations or through genomic alterations
that target their ceRNA regulators. We note that when
evaluating interactions we chose to employ the most
conservative criteria and did not correct for cell-line
specific low mRNA or miRNA expression or for other
types of regulation. This choice was made to ensure that
inferred interactions are tested on unaltered data that
was not filtered for any learned parameters. The result
avoids bias and overfitting but also underestimates the
predictive ability of inferred ceRNA interactions.
Our report focuses on interactions between mRNAs,

where two mRNAs compete for miRNA regulation. These
types of interactions have been the focus of a heated de-
bate, with opponents suggesting that mRNA and miRNA
abundances are often incompatible with physiologically
relevant regulation [20]. In contrast, proponents of these
interactions have described mathematical models to dem-
onstrate their relevance [10, 38–40], in vitro experiments
to support such models [41–43], as well in vivo observa-
tions of ceRNA regulation that are supported by specific
in vitro validation [10, 11, 16, 17, 44].
Unlike these other reports, we present high-

throughput validation of ceRNA interactions; we
tested the regulation of hundreds of genes by thou-
sands of ceRNA interaction in each of two contexts.
We describe computational evidence in conjunction
with high-throughput biochemical assays suggest that

ceRNA regulation is the norm and not an exception
in cancer cells. While ceRNA interactions can be eas-
ily detected and validated in extreme cases—as in
MYCN-amplified neuroblastomas [16] or binding-site
rich RNAs [15], our results suggest that they affect
the expression of thousands of genes and have the
potential to synergistically dysregulate drivers of
tumorigenesis in multiple tumor contexts.
Emerging evidence suggests that indirect regulation

between co-regulated RNAs and even between co-
regulated DNA regions is a common feature in the
cell. These types of regulatory interactions can help
propagate and amplify the effects of genomic alter-
ations to dysregulate genes in trans, but they remain
poorly understood and often overlooked. Focusing
specifically on miRNA targeting, multiple groups have
reported ceRNA regulation through miRNA mediators
by pseudogenes [9, 44], long noncoding RNAs [12,
45] and circular RNAs [15, 40, 46, 47]. There is also
growing evidence for target-mediated titration of RNA
binding proteins [48–50] and transcription factors
[51, 52], and most recently, evidence that changes in
copy number of some chromosomal regions can alter
the regulation of other regions through competition
for transcription factors [53].

Conclusions
Our results suggest that ceRNA interactions—defined as
indirect regulation between two mRNAs that are co-
regulated by miRNAs—are significantly predictive of
secondary effects observed following shRNA trans-
fections. We report on the largest-scale effort to test
these types of interactions, and our results suggest
that ceRNA interactions have genome-wide effects
on gene expression. Evidence from multiple studies
and analysis of healthy-cell profiles suggest that
ceRNA regulation is a feature of most cell types, and
should not be overlooked when studying gene
regulation.
Moreover, while our scope was limited, we argue

that ceRNA-like regulation, including regulators, tar-
gets, and modulators that can be non-coding RNAs,
proteins, and even DNA regions, can affect gene ex-
pression. These types of interactions may have weak
effects on average, but these effects can alter many
genes, can have strong effects in specific but possibly
cases [16], and can be combinatorially amplified
through multiple regulators that act as an ensemble
[7, 17]. In many cases, we have limited knowledge
about the biochemistry and kinetics of these interac-
tions, but our lack of mechanistic understanding
should not rule out the multitude of genetic and
computational evidence for this type of regulation.
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Additional files

Additional file 1: Tables S1-S5. Inferred ceRNA networks. Predicted
interactions in the two tumor contexts: Table S1. for BRCA, and Table S2. for
PRAD. Each table describes the coupled ceRNA pair, confidence level in the
interaction, number of mediating miRNAs, and the identity of miRNA
mediators. Tables S3-4. MCF7 and PC3 LINCS fold changes, describing
gene-expression responses to perturbagens. For each LINCS gene profiled at a
given time point after each perturbation, we provide the number of replicates
(Luminex plates), observed fold change relative to control, and the standard
error across plates. Table S5. BRCA and PRAD ceRNET validation using LINCS
data. For each LINCS gene profiled at a given time point, we list (1) the
number of predicted regulators that were silenced, (2) the size of the control
set, which includes the gene’s profiling after shRNA-mediated silencing of
genes that were not predicted to target it, (3) observed and expected
U-statistics, (4) and Z-statistics and associated the p-values obtained from them.
For each interaction at a given time point, we list the target fold change in
response to the perturbation, and the percentile rank when comparing target
fold changes to fold changes of all other profiled genes in response to the
perturbation. We also provide the identity of shRNA hairpins used. (PDF 1kb)

Additional file 2: Figure S1. Accounting for systematic biases. To
ensure that comparisons of target responses to predicted regulators and
non-regulators are free of bias, we repeated the analysis presented in
Fig. 4 after controlling for several properties. The tables demonstrate that
all results, before and after controlling for the following variables were in
agreement: (1) ceRNA interactions associated with the most significant
ceRNA-validating responses; (2) shRNAs that can act as human miRNAs
and produce off-target effects; (3) 3’ UTR length; (4) 3’ UTR CG content;
(5) RMA-normalized expression; (6) expression variability; and (7)
expression correlation with the predicted target. Here we present
comparisons to results presented in Fig. 1. The number of predicted
targets that were significantly (p < 0.05) downregulated in response to
transfections of shRNAs designed to target regulators are in red;
downregulated (p > 0.05) in orange; upregulated (p > 0.05) in blue, and
significantly upregulated (p < 0.05) in green. P values give the confidence
that the resulting distribution is not due to chance. (PDF 1027 kb)

Additional file 3: Figure S2. The effect of predicted PTEN ceRNA
regulators by each of the three methods. Average PTEN mRNA fold
change following shRNA-mediated silencing of its predicted regulators,
as predicted by each ceRNA inference method including random assay
selection, and inferences by Hermes, MuTaME, and cefinder. P values
were calculated by comparing fold changes to random assay selection
with PTEN expression profiling, using the Student’s T-test (two-tailed).
Average fold changes were normalized to the random assay selection.
Bars show standard errors; * stands for p < 0.05; ** for p < 0.01; *** for
p < 0.001. (PDF 922 kb)

Additional file 4: Figure S3. Genome wide comparison. FC comparison
between Hermes, cefinder and random assay selection. Both Hermes and
cefinder significantly outperform Random. Hermes outperforms cefinder
at P < 5E-07 and P < 2E-44, for MCF7 and PC3, respectively; p-values
based on two-sample Kolmogorov–Smirnov tests of ceRNA-target fold
changes. (PDF 1033 kb)
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