457 research outputs found
Fermentation process for alcoholic beverage production from mahua (Madhuca indica J. F. Mel.) flowers
Mahua flowers are rich in sugar (68-72%), in addition to a number of minerals and one of the most important raw materials for alcohol fermentation. The present investigation was for the development of a non-distilled alcoholic beverage from Mahua flowers. Eighteen (18) treatment combinations consisting of two temperatures (25 and 30°C), three pH (4.0, 4.5 and 5.0) and three period of fermentation (7, 14 and 21 days) were used in the fermentation conditions. The maximum yield of ethanol (9.51 %) occurred at 25°C with pH 4.5 after 14 days of fermentation of Mahua flower juice. The fermented non-distilled alcoholic beverage contained total sugar (8.83 mg/ml), reducing sugar (0.82 mg/ml), total soluble solids (6.37°Brix) titrable acidity (0.65 %), and volatile acidity (0.086%). Methanol was not detected at any stage of fermentation. The developed fermented alcoholic beverage had characteristic flavor and aroma of Mahua flowers with about 7 to 9% alcohol.Keywords: Madhuca indica, ethanol, reducing sugar, fermentation.African Journal of Biotechnology Vol. 12(39), pp. 5771-577
Effects of low temperature on photoinhibition and singlet oxygen production in four natural accessions of Arabidopsis
Main conclusionsLow temperature decreases PSII damage in vivo, confirming earlier in vitro results. Susceptibility to photoinhibition differs among Arabidopsis accessions and moderately decreases after 2-week cold-treatment. Flavonols may alleviate photoinhibition.AbstractThe rate of light-induced inactivation of photosystem II (PSII) at 22 and 4 degrees C was measured from natural accessions of Arabidopsis thaliana (Rschew, Tenela, Columbia-0, Coimbra) grown under optimal conditions (21 degrees C), and at 4 degrees C from plants shifted to 4 degrees C for 2 weeks. Measurements were done in the absence and presence of lincomycin (to block repair). PSII activity was assayed with the chlorophyll a fluorescence parameter F-v/F-m and with light-saturated rate of oxygen evolution using a quinone acceptor. When grown at 21 degrees C, Rschew was the most tolerant to photoinhibition and Coimbra the least. Damage to PSII, judged from fitting the decrease in oxygen evolution or F-v/F-m to a first-order equation, proceeded more slowly or equally at 4 than at 22 degrees C. The 2-week cold-treatment decreased photoinhibition at 4 degrees C consistently in Columbia-0 and Coimbra, whereas in Rschew and Tenela the results depended on the method used to assay photoinhibition. The rate of singlet oxygen production by isolated thylakoid membranes, measured with histidine, stayed the same or slightly decreased with decreasing temperature. On the other hand, measurements of singlet oxygen from leaves with Singlet Oxygen Sensor Green suggest that in vivo more singlet oxygen is produced at 4 degrees C. Under high light, the PSII electron acceptor Q(A) was more reduced at 4 than at 22 degrees C. Singlet oxygen production, in vitro or in vivo, did not decrease due to the cold-treatment. Epidermal flavonols increased during the cold-treatment and, in Columbia-0 and Coimbra, the amount correlated with photoinhibition tolerance
Degradation of chlorophyll and synthesis of flavonols during autumn senescence-the story told by individual leaves
Autumn senescence of deciduous trees is characterized by chlorophyll degradation and flavonoid synthesis. In the present study, chlorophyll and flavonol contents were measured every morning and evening during the whole autumn with a non-destructive method from individual leaves of Sorbus aucuparia, Acer platanoides, Betula pendula and Prunus padus. In most of the studied trees, the chlorophyll content of each individual leaf remained constant until a phase of rapid degradation commenced. The fast phase lasted only similar to 1 week and ended with abscission. In S. aucuparia, contrary to the other species, the chlorophyll content of leaflets slowly but steadily decreased during the whole autumn, but rapid chlorophyll degradation commenced only prior to leaflet abscission also in this species. An increase in flavonols commonly accompanied the rapid degradation of chlorophyll. The results may suggest that each individual tree leaf retains its photosynthetic activity, reflected by a high chlorophyll content, until a rapid phase of chlorophyll degradation and flavonoid synthesis begins. Therefore, in studies of autumn senescence, leaves whose chlorophyll content is decreasing and leaves with summertime chlorophyll content (i.e. the leaves that have not yet started to degrade chlorophyll) should be treated separately
Into the UV: The Atmosphere of the Hot Jupiter HAT-P-41b Revealed
For solar system objects, ultraviolet spectroscopy has been critical in identifying sources of stratospheric heating and measuring the abundances of a variety of hydrocarbon and sulfur-bearing species, produced via photochemical mechanisms, as well as oxygen and ozone. To date, fewer than 20 exoplanets have been probed in this critical wavelength range (0.2–0.4 μm). Here we use data from Hubble's newly implemented WFC3 UVIS G280 grism to probe the atmosphere of the hot Jupiter HAT-P-41b in the ultraviolet through optical in combination with observations at infrared wavelengths. We analyze and interpret HAT-P-41b's 0.2–5.0 μm transmission spectrum using a broad range of methodologies including multiple treatments of data systematics as well as comparisons with atmospheric forward, cloud microphysical, and multiple atmospheric retrieval models. Although some analysis and interpretation methods favor the presence of clouds or potentially a combination of Na, VO, AlO, and CrH to explain the ultraviolet through optical portions of HAT-P-41b's transmission spectrum, we find that the presence of a significant H− opacity provides the most robust explanation. We obtain a constraint for the abundance of H−, , in HAT-P-41b's atmosphere, which is several orders of magnitude larger than predictions from equilibrium chemistry for a ~1700–1950 K hot Jupiter. We show that a combination of photochemical and collisional processes on hot hydrogen-dominated exoplanets can readily supply the necessary amount of H− and suggest that such processes are at work in HAT-P-41b and the atmospheres of many other hot Jupiters
Multiplicity Distributions and Charged-neutral Fluctuations
Results from the multiplicity distributions of inclusive photons and charged
particles, scaling of particle multiplicities, event-by-event multiplicity
fluctuations, and charged-neutral fluctuations in 158 GeV Pb+Pb
collisions are presented and discussed. A scaling of charged particle
multiplicity as and photons as have been observed, indicating violation of naive wounded nucleon model.
The analysis of localized charged-neutral fluctuation indicates a
model-independent demonstration of non-statistical fluctuations in both charged
particles and photons in limited azimuthal regions. However, no correlated
charged-neutral fluctuations are observed.Comment: Talk given at the International Symposium on Nuclear Physics
(ISNP-2000), Mumbai, India, 18-22 Dec 2000, Proceedings to be published in
Pramana, Journal of Physic
Relative contribution of type 1 and type 2 diabetes loci to the genetic etiology of adult-onset, non-insulin-requiring autoimmune diabetes
This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.SFAG is supported by the NIH (R01 DK085212) and the Daniel B. Burke Endowed Chair for Diabetes Research. DM is supported by CIBERDEM, Instituto de Salud Carlos III (Spain)
Corruption and bicameral reforms
During the last decade unicameral proposals have been put forward in fourteen US states. In this paper we analyze the effects of the proposed constitutional reforms, in a setting where decision making is subject to ‘hard time constraints’, and lawmakers face the opposing interests of a lobby and the electorate. We show that bicameralism might lead to a decline in the lawmakers’ bargaining power vis-a-vis the lobby, thus compromising their accountability to voters. Hence, bicameralism is not a panacea against the abuse of power by elected legislators and the proposed unicameral reforms could be effective in reducing corruption among elected representatives
Poly-Thymidine Oligonucleotides Mediate Activation of Murine Glial Cells Primarily Through TLR7, Not TLR8
The functional role of murine TLR8 in the inflammatory response of the central nervous system (CNS) remains unclear. Murine TLR8 does not appear to respond to human TLR7/8 agonists, due to a five amino acid deletion in the ectodomain. However, recent studies have suggested that murine TLR8 may be stimulated by alternate ligands, which include vaccinia virus DNA, phosphothioate oligodeoxynucleotides (ODNs) or the combination of phosphothioate poly-thymidine oligonucleotides (pT-ODNs) with TLR7/8 agonists. In the current study, we analyzed the ability of pT-ODNs to induce activation of murine glial cells in the presence or absence of TLR7/8 agonists. We found that TLR7/8 agonists induced the expression of glial cell activation markers and induced the production of multiple proinflammatory cytokines and chemokines in mixed glial cultures. In contrast, pT-ODNs alone induced only low level expression of two cytokines, CCL2 and CXCL10. The combination of pT-ODNs along with TLR7/8 agonists induced a synergistic response with substantially higher levels of proinflammatory cytokines and chemokines compared to CL075. This enhancement was not due to cellular uptake of the agonist, indicating that the pT-ODN enhancement of cytokine responses was due to effects on an intracellular process. Interestingly, this response was also not due to synergistic stimulation of both TLR7 and TLR8, as the loss of TLR7 abolished the activation of glial cells and cytokine production. Thus, pT-ODNs act in synergy with TLR7/8 agonists to induce strong TLR7-dependent cytokine production in glial cells, suggesting that the combination of pT-ODNs with TLR7 agonists may be a useful mechanism to induce pronounced glial activation in the CNS
Chikungunya Disease: Infection-Associated Markers from the Acute to the Chronic Phase of Arbovirus-Induced Arthralgia
At the end of 2005, an outbreak of fever associated with joint pain occurred in La Réunion. The causal agent, chikungunya virus (CHIKV), has been known for 50 years and could thus be readily identified. This arbovirus is present worldwide, particularly in India, but also in Europe, with new variants returning to Africa. In humans, it causes a disease characterized by a typical acute infection, sometimes followed by persistent arthralgia and myalgia lasting months or years. Investigations in the La Réunion cohort and studies in a macaque model of chikungunya implicated monocytes-macrophages in viral persistence. In this Review, we consider the relationship between CHIKV and the immune response and discuss predictive factors for chronic arthralgia and myalgia by providing an overview of current knowledge on chikungunya pathogenesis. Comparisons of data from animal models of the acute and chronic phases of infection, and data from clinical series, provide information about the mechanisms of CHIKV infection–associated inflammation, viral persistence in monocytes-macrophages, and their link to chronic signs
TGFβ pathway limits dedifferentiation following WNT and MAPK pathway activation to suppress intestinal tumourigenesis
Recent studies have suggested increased plasticity of differentiated cells within the intestine to act both as intestinal stem cells (ISCs) and tumour-initiating cells. However, little is known of the processes that regulate this plasticity. Our previous work has shown that activating mutations of Kras or the NF-κB pathway can drive dedifferentiation of intestinal cells lacking Apc. To investigate this process further, we profiled both cells undergoing dedifferentiation in vitro and tumours generated from these cells in vivo by gene expression analysis. Remarkably, no clear differences were observed in the tumours; however, during dedifferentiation in vitro we found a marked upregulation of TGFβ signalling, a pathway commonly mutated in colorectal cancer (CRC). Genetic inactivation of TGFβ type 1 receptor (Tgfbr1/Alk5) enhanced the ability of KrasG12D/+ mutation to drive dedifferentiation and markedly accelerated tumourigenesis. Mechanistically this is associated with a marked activation of MAPK signalling. Tumourigenesis from differentiated compartments is potently inhibited by MEK inhibition. Taken together, we show that tumours arising in differentiated compartments will be exposed to different suppressive signals, for example, TGFβ and blockade of these makes tumourigenesis more efficient from this compartment
- …