214 research outputs found

    Tripartite interactions between two phase qubits and a resonant cavity

    Full text link
    The creation and manipulation of multipartite entangled states is important for advancements in quantum computation and communication, and for testing our fundamental understanding of quantum mechanics and precision measurements. Multipartite entanglement has been achieved by use of various forms of quantum bits (qubits), such as trapped ions, photons, and atoms passing through microwave cavities. Quantum systems based on superconducting circuits have been used to control pair-wise interactions of qubits, either directly, through a quantum bus, or via controllable coupling. Here, we describe the first demonstration of coherent interactions of three directly coupled superconducting quantum systems, two phase qubits and a resonant cavity. We introduce a simple Bloch-sphere-like representation to help one visualize the unitary evolution of this tripartite system as it shares a single microwave photon. With careful control and timing of the initial conditions, this leads to a protocol for creating a rich variety of entangled states. Experimentally, we provide evidence for the deterministic evolution from a simple product state, through a tripartite W-state, into a bipartite Bell-state. These experiments are another step towards deterministically generating multipartite entanglement in superconducting systems with more than two qubits

    Gipc3 mutations associated with audiogenic seizures and sensorineural hearing loss in mouse and human

    Get PDF
    Sensorineural hearing loss affects the quality of life and communication of millions of people, but the underlying molecular mechanisms remain elusive. Here, we identify mutations in Gipc3 underlying progressive sensorineural hearing loss (age-related hearing loss 5, ahl5) and audiogenic seizures (juvenile audiogenic monogenic seizure 1, jams1) in mice and autosomal recessive deafness DFNB15 and DFNB95 in humans. Gipc3 localizes to inner ear sensory hair cells and spiral ganglion. A missense mutation in the PDZ domain has an attenuating effect on mechanotransduction and the acquisition of mature inner hair cell potassium currents. Magnitude and temporal progression of wave I amplitude of afferent neurons correlate with susceptibility and resistance to audiogenic seizures. The Gipc3343A allele disrupts the structure of the stereocilia bundle and affects long-term function of auditory hair cells and spiral ganglion neurons. Our study suggests a pivotal role of Gipc3 in acoustic signal acquisition and propagation in cochlear hair cells

    PhagoSight: an open-source MATLAB® package for the analysis of fluorescent neutrophil and macrophage migration in a zebrafish model

    Get PDF
    Neutrophil migration in zebrafish larvae is increasingly used as a model to study the response of these leukocytes to different determinants of the cellular inflammatory response. However, it remains challenging to extract comprehensive information describing the behaviour of neutrophils from the multi-dimensional data sets acquired with widefield or confocal microscopes. Here, we describe PhagoSight, an open-source software package for the segmentation, tracking and visualisation of migrating phagocytes in three dimensions. The algorithms in PhagoSight extract a large number of measurements that summarise the behaviour of neutrophils, but that could potentially be applied to any moving fluorescent cells. To derive a useful panel of variables quantifying aspects of neutrophil migratory behaviour, and to demonstrate the utility of PhagoSight, we evaluated changes in the volume of migrating neutrophils. Cell volume increased as neutrophils migrated towards the wound region of injured zebrafish. PhagoSight is openly available as MATLAB® m-files under the GNU General Public License. Synthetic data sets and a comprehensive user manual are available from http://www.phagosight.org

    Techniques of EMG signal analysis: detection, processing, classification and applications

    Get PDF
    Electromyography (EMG) signals can be used for clinical/biomedical applications, Evolvable Hardware Chip (EHW) development, and modern human computer interaction. EMG signals acquired from muscles require advanced methods for detection, decomposition, processing, and classification. The purpose of this paper is to illustrate the various methodologies and algorithms for EMG signal analysis to provide efficient and effective ways of understanding the signal and its nature. We further point up some of the hardware implementations using EMG focusing on applications related to prosthetic hand control, grasp recognition, and human computer interaction. A comparison study is also given to show performance of various EMG signal analysis methods. This paper provides researchers a good understanding of EMG signal and its analysis procedures. This knowledge will help them develop more powerful, flexible, and efficient applications

    Meta-analysis of five genome-wide association studies identifies multiple new loci associated with testicular germ cell tumor

    Get PDF
    The international Testicular Cancer Consortium (TECAC) combined five published genome-wide association studies of testicular germ cell tumor (TGCT; 3,558 cases and 13,970 controls) to identify new susceptibility loci. We conducted a fixed-effects meta-analysis, including, to our knowledge, the first analysis of the X chromosome. Eight new loci mapping to 2q14.2, 3q26.2, 4q35.2, 7q36.3, 10q26.13, 15q21.3, 15q22.31, and Xq28 achieved genome-wide significance (P < 5 × 10−8). Most loci harbor biologically plausible candidate genes. We refined previously reported associations at 9p24.3 and 19p12 by identifying one and three additional independent SNPs, respectively. In aggregate, the 39 independent markers identified to date explain 37% of father-to-son familial risk, 8% of which can be attributed to the 12 new signals reported here. Our findings substantially increase the number of known TGCT susceptibility alleles, move the field closer to a comprehensive understanding of the underlying genetic architecture of TGCT, and provide further clues to the etiology of TGCT

    Predictors of stable return-to-work in non-acute, non-specific spinal pain: low total prior sick-listing, high self prediction and young age. A two-year prospective cohort study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Non-specific spinal pain (NSP), comprising back and/or neck pain, is one of the leading disorders in long-term sick-listing. During 2000-2004, 125 Swedish primary-care patients with non-acute NSP, full-time sick-listed 6 weeks-2 years, were included in a randomized controlled trial to compare a cognitive-behavioural programme with traditional primary care. This prospective cohort study is a re-assessment of the data from the randomized trial with the 2 treatment groups considered as a single cohort. The aim was to investigate which baseline variables predict a stable return-to-work during a 2-year period after baseline: objective variables from function tests, socioeconomic, subjective and/or treatment variables. Stable return-to-work was a return-to-work lasting for at least 1 month from the start of follow-up.</p> <p>Methods</p> <p><it>Stable return-to-work </it>was the outcome variable, the above-mentioned factors were the predictive variables in multiple-logistic regression models, one per follow-up at 6, 12, 18 and 24 months after baseline. The factors from univariate analyzes with a <it>p</it>-value of at most .10 were included. The non-significant variables were excluded stepwise to yield models comprising only significant factors (<it>p </it>< .05). As the comparatively few cases made it risky to associate certain predictors with certain time-points, we finally considered the predictors which were represented in at least 3 follow-ups. They are presented with odds ratios (OR) and 95% confidence intervals.</p> <p>Results</p> <p>Three variables qualified, all of them represented in 3 follow-ups: <it>Low total prior sick-listing </it>(including all diagnoses) was the strongest predictor in 2 follow-ups, 18 and 24 months, OR 4.8 [1.9-12.3] and 3.8 [1.6-8.7] respectively, <it>High self prediction </it>(the patients' own belief in return-to-work) was the strongest at 12 months, OR 5.2 [1.5-17.5] and <it>Young age </it>(max 44 years) the second strongest at 18 months, OR 3.5 [1.3-9.1].</p> <p>Conclusions</p> <p>In primary-care patients with non-acute NSP, the strong predictors of stable return-to-work were 2 socioeconomic variables, <it>Low total prior sick-listing </it>and <it>Young age</it>, and 1 subjective variable, <it>High self-prediction</it>. Objective variables from function tests and treatment variables were non-predictors. Except for <it>Young age</it>, the predictors have previously been insufficiently studied, and so our study should widen knowledge within clinical practice.</p> <p>Trial registration</p> <p>Trial registration number for the original trial NCT00488735.</p

    Stem cells in ectodermal development

    Get PDF
    Tissue-specific stem cells sustain organs for a lifetime through self-renewal and generating differentiated progeny. Although tissue stem cells are established during organogenesis, the precise origin of most adult stem cells in the developing embryo is unclear. Mammalian skin is one of the best-studied epithelial systems containing stem cells to date, however the origin of most of the stem cell populations found in the adult epidermis is unknown. Here, we try to recapitulate the emergence and genesis of an ectodermal stem cell during development until the formation of an adult skin. We ask whether skin stem cells share key transcriptional regulators with their embryonic counterparts and discuss whether embryonic-like stem cells may persist through to adulthood in vivo
    corecore