28,004 research outputs found

    Investigation of a hopping transporter concept for lunar exploration

    Get PDF
    Performance and dynamic characteristics determined for hopping transporter for lunar exploratio

    Spacecraft control/flexible structures interaction study

    Get PDF
    An initial study to begin development of a flight experiment to measure spacecraft control/flexible structure interactions was completed. The approach consisted of developing the equations of motion for a vehicle possessing a flexible solar array, then linearizing about some nominal motion of the craft. A set of solutions is assumed for array deflection using a continuous normal mode method and important parameters are identified. Interrelationships between these parameters, measurement techniques, and input requirements are discussed which assure minimization of special vehicle maneuvers and optimization of data to be obtained during the normal flight sequence. Limited consideration is given to flight data retrieval and processing techniques as correlated with the requirements imposed by the measurement system. Results indicate that inflight measurement of the bending and torsional mode shapes and respective frequencies, and damping ratios, is necessary. Other parameters may be measured from design data

    Repulsive Casimir Pistons

    Get PDF
    Casimir pistons are models in which finite Casimir forces can be calculated without any suspect renormalizations. It has been suggested that such forces are always attractive. We present three scenarios in which that is not true. Two of these depend on mixing two types of boundary conditions. The other, however, is a simple type of quantum graph in which the sign of the force depends upon the number of edges.Comment: 4 pages, 2 figures; RevTeX. Minor additions and correction

    Relations among Supersymmetric Lattice Gauge Theories via Orbifolding

    Full text link
    We show how to derive Catterall's supersymmetric lattice gauge theories directly from the general principle of orbifolding followed by a variant of the usual deconstruction. These theories are forced to be complexified due to a clash between charge assignments under U(1)-symmetries and lattice assignments in terms of scalar, vector and tensor components for the fermions. Other prescriptions for how to discretize the theory follow automatically by orbifolding and deconstruction. We find that Catterall's complexified model for the two-dimensional N=(2,2) theory has two independent preserved supersymmetries. We comment on consistent truncations to lattice theories without this complexification and with the correct continuum limit. The construction of lattice theories this way is general, and can be used to derive new supersymmetric lattice theories through the orbifolding procedure. As an example, we apply the prescription to topologically twisted four-dimensional N=2 supersymmetric Yang-Mills theory. We show that a consistent truncation is closely related to the lattice formulation previously given by Sugino.Comment: 20 pages, LaTeX2e, no figur

    Periodic orbit effects on conductance peak heights in a chaotic quantum dot

    Full text link
    We study the effects of short-time classical dynamics on the distribution of Coulomb blockade peak heights in a chaotic quantum dot. The location of one or both leads relative to the short unstable orbits, as well as relative to the symmetry lines, can have large effects on the moments and on the head and tail of the conductance distribution. We study these effects analytically as a function of the stability exponent of the orbits involved, and also numerically using the stadium billiard as a model. The predicted behavior is robust, depending only on the short-time behavior of the many-body quantum system, and consequently insensitive to moderate-sized perturbations.Comment: 14 pages, including 6 figure

    The Attractor and the Quantum States

    Full text link
    The dissipative dynamics anticipated in the proof of 't Hooft's existence theorem -- "For any quantum system there exists at least one deterministic model that reproduces all its dynamics after prequantization" -- is constructed here explicitly. We propose a generalization of Liouville's classical phase space equation, incorporating dissipation and diffusion, and demonstrate that it describes the emergence of quantum states and their dynamics in the Schroedinger picture. Asymptotically, there is a stable ground state and two decoupled sets of degrees of freedom, which transform into each other under the energy-parity symmetry of Kaplan and Sundrum. They recover the familiar Hilbert space and its dual. Expectations of observables are shown to agree with the Born rule, which is not imposed a priori. This attractor mechanism is applicable in the presence of interactions, to few-body or field theories in particular.Comment: 14 pages; based on invited talk at 4th Workshop ad memoriam of Carlo Novero "Advances in Foundations of Quantum Mechanics and Quantum Information with Atoms and Photons", Torino, May 2008; submitted to Int J Qu Inf

    The dynamics of laser droplet generation

    Full text link
    We propose an experimental setup allowing for the characterization of laser droplet generation in terms of the underlying dynamics, primarily showing that the latter is deterministically chaotic by means of nonlinear time series analysis methods. In particular, we use a laser pulse to melt the end of a properly fed vertically placed metal wire. Due to the interplay of surface tension, gravity force and light-metal interaction, undulating pendant droplets are formed at the molten end, which eventually completely detach from the wire as a consequence of their increasing mass. We capture the dynamics of this process by employing a high-speed infrared camera, thereby indirectly measuring the temperature of the wire end and the pendant droplets. The time series is subsequently generated as the mean value over the pixel intensity of every infrared snapshot. Finally, we employ methods of nonlinear time series analysis to reconstruct the phase space from the observed variable and test it against determinism and stationarity. After establishing that the observed laser droplet generation is a deterministic and dynamically stationary process, we calculate the spectra of Lyapunov exponents. We obtain a positive largest Lyapunov exponent and a negative divergence, i.e., sum of all the exponents, thus indicating that the observed dynamics is deterministically chaotic with an attractor as solution in the phase space. In addition to characterizing the dynamics of laser droplet generation, we outline industrial applications of the process and point out the significance of our findings for future attempts at mathematical modeling.Comment: 7 two-column pages, 8 figures; accepted for publication in Chaos [supplementary material available at http://www.matjazperc.com/chaos/laser.html

    unreinforced masonry buildings

    Get PDF
    A recent earthquake of M=4.9 occurred on 29 October 2007 in C, ameli, Denizli, which is located in a seismically active region at southwest Anatolia, Turkey. It has caused extensive damages at unreinforced masonry buildings like many other cases observed in Turkey during other previous earthquakes. Most of the damaged structures were non-engineered, seismically deficient, unreinforced masonry buildings. This paper presents a site survey of these damaged buildings. In addition to typical masonry damages, some infrequent, event-specific damages were also observed. Reasons for the relatively wide spread damages considering the magnitude of the event are discussed in the paper

    Exact Vacuum Energy of Orbifold Lattice Theories

    Full text link
    We investigate the orbifold lattice theories constructed from supersymmetric Yang-Mills matrix theories (mother theories) with four and eight supercharges. We show that the vacuum energy of these theories does not receive any quantum correction perturbatively.Comment: 14 pages, no figure, LaTeX2e, typos corrected, errors in references corrected, comments adde
    corecore