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An initial study has been completed to begin development of a flight
experiment to measure spacecraft control/flexible structure interaction.
The work reported consists of two phases: identification of appropriate
structural parameters which can be associated with flexibility phenomena,
and suggestions for the development of an experiment for a satellite con-
figuration typical of near future vehicles which are sensitive to such
effects. Recommendations are made with respect to the type of data to be
collected and instrumentation associated with these data. The approach
consists of developing the equations of motion for a vehicle possessing a
Flexible solar array, then linearizing about some nominal motion of the
craft. A set of solutions are assumed for array deflection using a con-
tinuous normal mode method and important parameters are exposed. In£light
and ground based measurements are distinguished. Interrelationships between
these parameters, measurement techniques, and input requirements are dis-
cussed which assure minimization of special vehicle maneuvers and opti-
mization of data to be obtained during the normal flight sequence. Limited
consideration is given to flight data retrieval and processing techniques
as correlated with the requirements imposed by the measurement system.
Results indicate that inflight measurement of the bending and torsional
mode shapes and respective frequencies, and damping ratios is necessary.
Other parameters may be measured from design data. Areas of proposed
investigation include examination of specific array configurations, com-
puter simulation of array dynamics, interaction properties of the attitude
control system, and design of the. measurement system.
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NOMENCLATURE

r
[n} array frame of reference

[Ur} vehicle frame of reference

(} inertial frame of reference

11i rbii'cii'di
mode dependent integral expressions defined inei,,gi ,hi ,m

i Appendix B

Ili ) p i I t'rni

f. frequency of hi,	 retained harmonic mode

mass dependent integral expressions defined inM1 01
Appendix D

m
f

mass distribution of array (mass per unit area)
1

q

ql angular velocity of craft in inertial frame

_r
q 2

r
angular velocity of {a} frame with respect to {b}
frame

q10
disturbance values for qi, angular velocity of vehicle

r 
position vector (i = 1,...6)

t time

C1 transformation matrix between {b} and [n}

CZ transformation matrix between {U} and {i}

C1^,C2^ transformation matrix components

dps force distribution on array differential element

Fs force distribution on array

Fs
i

force magnitude on appendage element

P3 component si Fs in a3 direction

Fi f	 f	 F3 ^i(r3)dr3dr4
r3 r4

°-
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viii C

H angular momentum vector ;,

Is moment of inertia of array element
it

t vehicle moment of inertia (p = 1,2,3)
p

t M vehicle total mass

N degree of highest harmonic mode retained in analysis
F

-

R !	 dr4
r4

r
R,

r	

r4dr4

4

d sT torque acting on array differential element

Te component in a2 direction of Ta s

T
f 	 f	 Ts^i (r 3)dr4dr3

e
rj

r3 r4

010M)  angular velocity amplitude, frequency dependent

(P,i0(},))^ bending amplitude of jth mode
a

,i
CAM) torsional amplitude of jth mode

f
mass ratio

f

a array torsional dependent variable

(^s array element rotation vector

did Kronecker delta {^
U 5

^ frequency parameter

^i bending mode shape of i
th 

mode
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1. PURPOSE OF THE INVESTIGATION

Adverse effects of flexibility on satellite attitude motion were

manifested early in the U.S. space program and have remained important

factors in spacecraft designs. Mathematical analysis supported by ground

experimentation have been relatively reliable for the present generation

of satellites. However, future and presently developing spacecraft are

progressing toward larger and highly flexible antennas and solar panels.

In such cases ground experiments are impractical because of size and

environmental restrictions.

The overwhelming importance of the flexibility problem coupled with

possilile inadequacies of present analytical approximations and ground test-

ing procedures indicate the introduction of a program and apparatus

capable of yielding inflight data on appendage dynamics and their effects

on craft control. Only by implementation of a monitoring system on these

new satellite configurations can continued progress be made on the contrul

of these effects. In addition, further refinements on design procedures

can be derived from this data.

It is the purpose of this investigation to identify the structural

and control system parameters which can be associated with the flexibility-

control interaction phenomenon, and develop an experiment for a satellite

configuration typical of near future vehicles.

2. CURRENT AND RECENT FLEXIBILITY PROGRAMS

Many prc'',sed vehicles have appendages which are very large and

highly flexible. Examples are the radiotelescope satellite (Ref. 1,2),

camposed of flexible aluminum ribbons having a diameter of fifteen hundred

fl	 ._
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i
meters. Other equally illustrative examples are abundant, i.e., the pro-

posed direct T.V. broadcast satellite (Ref. 1) 0.1 ph possesses solar	

ii
arrays with an area of one thousand square meters. The s1ze of these 	

i
vehicles indicates the importance of accurately anticipating flexibility

interactions.

Programs designated for flexibility experiments have generally been

Iamong the first to suffer £roi\ cost cuts, weight decreases, and other

considerations leading to syste,.,t abolishment. Minor flexibility control

f	 interaction tests were performed in conjunction with the Gemini, Apollo

i
programs (Ref. 3,4), and a major attempt at flexibility measurement was

pinnned in conjunction with the Canadian Communications Techaology satel-

lite (Ref. 5,6). However, this effort has been stripped to an optical

system which will. measure only static deformations. The Flexible Rolled

Up Solar Array (Ref. 7) has been flown successfully and is equipped with

six accelerometers and three strain genes and temperature sensors for the

detection of array dynamic response. Interaction effects were not observ-

able and peak accelerations have been only of the order of a few milli-gas.

Several significant analytical studies have been undertaken to deter-

mine appendage dynamics and control interaction phenomenon. Studies have 	
k	 i

been completed which Include the contribution of large flexible appendages

to control difficulties arising from continuous and flexibly connected 	 a

bodies. One of the more promising analytical methods uses hybrid coordi-

nates (Ref. 8,9). This method formulates the flexible space vehicle con-

trol as a combination of discrete and modal coordinates. The analysis

involves three distinct steps. First, preliminary design is based on root

locus ,plots for single axis response of linearized systems. Second, modi-

fications are made as required by eigenvalue analysis of the coupled

0	 6



linear systems. Third, nonlinear differential equation simulation is

accomplished using numerical integration. The third step is used for

design confirmation.

In particular cases, several other methods of analysis are adequate

depending on vehicle geometry and appendage characteristics. These are

the energy sink method, usually applicable to the compact, near rigid

body type of vehicle; the discrete parameter method, which is best suited

to a satellite with compact bodies and flexibly attached appendages; and

the modal coordinate method, which is adaptable to highly flexible craft

with larger overall dimensions.

II. FLEXIBLE STRUCTURE

1. DEFINITION

An adequate definition for flexibility may be evaluated only with

regard to the context in which it is to be used. For applications to

satellite flexibility control interaction, it is not necessary to define

flexibility in the strictest physical sense but rather to define those

aspects of flexibility necessary in predicting important coordinate values

and parameters of the interaction. It is also necessary that the chosen

mathematical model genexate equations of motion which are computationally

treatatle.

Two realms of flexibility-control interaction immediately distinguish

themselves as important. First, attention should be directed toward deter-

mining attitude control sensitivity to the elastic mode frequencies of

appendages and flexibly connected subsystems of rigid bodies. Secondly,

sensitivity of attitude control sensors to changes in vehicle inertial
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properties arising from flexibilities must be investigated. Restricting

the definition of "critical flexibility" to those considerations critical

to the interaction problem leads to the following definition: 	 j

Critical flexibility with respect to the attitude control—.	
I

structural dynamic interaction problem are those modes of

flexibility which create elastic deformations of continuous
I

and discrete masses with modal frequencies within the fre-

quency sensitivity range of the control system, and also

those flexibility states which cause redistribution of

vehicle inertia to an extent tha` control system activa—

Lion is generated.

III. DEVELOPMENT OF EQUATIONS OF MOTION

1. ASSUMPTIONS AND MODEL CONFIGURATION

The spacecraft shall be modelled using a relatively simple,confi.gura-

Lion. It is found that this greatly reduces mathematical complexity of

the model without significantly compromising the utility of resulting

equations. The configuration chosen consists of a, rigid central body with

one continuous flexible solar array. The second array may be considered

stiff. The appendage axis in its undeformed position is assumed to act

through the vehicle center of mass. It is assumed that no external forces

or torques are applied to the array and that the control system will react

with a pure torque only. The basic configuration of the craft, earth, sun

system, is shown in Fig. 1.

Three coordinate systems are used in the formulation of the problem.

An inertial reference {i} is fixed at the earth's center. _A second system
F

{b} is fixed to the vehicle center of mass and is allowed to rotate with
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the r[gid central body. The third coordinate system {n} is fixed in the

solar array and allowed to rotate with the array as it maintains proper

solar orientation. The origin of the {a} system will coincide to the

origin of the M system when the array is undeflected, as will the a2

and b2 axes. For further simp:ification, the array is assumed flat and

of homogeneous construction with no mass discontinuities. This assumption

greatly reduces the analytical complexity while retaining the presence

of important parameters. Array position vectors are shown in Fig. 2.

2. A1MY EQUATIONS OF MOTION

If an element of the array is considered as shown in Fig. 2,, the

position vector is the sum of those vectors which may be referred to the

previously defined reference frames. The equation of translational motion

for the element may be derived from Newton's second law.

dP s	 £ zi dms	(1)
1=1

The frames of reference may be related through the use of appropriate

trans£ormz,eion matrices.

i{	 Cl{b)

and

{b} = C2{i}

The  motion of the {a} frame with respect to the {b} frame will con-

sist of a rotational motion known in time and a translational motion which

is a function of the array deformation. For smalltime intervals, the

motion o£ '{b} with respect to {i} may be expressed in terms of the rigid
k
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body angular velocity variables q l . Transformation components of fa and

2 shall be designated C l and C2C ij	 1j

Disturbance quantities shall be expressed as follows. Each component

of a vector A, shall consist of a nominal steady state va3ue (e.g. A 
1
1)

plus a disturbance quantity (e.g. A10)
1 	 ^. In reference frame {a}, for

example, vector Al will appear as,

(A1 + A10)

Al 
= [al a

2 a3} (A1+ A10)

(A1 + A30)

where the superscript specifies the vector component. Position vectors

are specified in Appendix A.

Using Eq. (1), a matrix relation extracted from work by Likin's

;tef. 8), gives for the array element;

Ts ms {C1 [C2r1 +r2 + 2g1r2 + gl41r2 + 41'23

6	 ti	 6

— (i 3Eri)^(Clgl) + [(Clgl)(Clql) + 2 (Clgl) g2 + 42g2 3( E ri)
i=3

+ 2 [ 42 + (C1gl)](r5 
+ Yd s + (r5 + 

r6 ) s }	 (2)

where the coordinate frame is {a}.

The vector r2 exists only due to the array deformation. Thereforep

it may be expressed in terms of the deflection variables r 5 and r6.

Defining the terms,

i
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N	
m	 (3a)
M

R = J dr4	(3b)
r4

R' = J r4dr4	(3c)
r4

allows expression of rZ as,

r2 = -U 1 C2 [r5R + M'Idt.3	 (4a)

r3

r2 =	 f CZ[r51t + aR')dr 3	(4b)

r3

r2 = -P I C2 [r5R + 6.R'Idr 3	(4c)

r3

$qs. (4) must include the contribution of all dynamic components to

the motion of the mass center. Since only the array is considered flex-

ible, all contributions emanate from the array and are included in these

-	 -integral expressions. The additional term "e" which occurs in Likin'.s
i

f	
work is zero under the assumpt=:ons here. The integral terms result in

higher order terms and will be deleted upon linearizing the following

equations. The orbital rate is assumed to be verysmall thus allowing the

deletion of terms containing time derivatives of the transformation matrix

Cz

5

«	 AW
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Thus, Eq. (2) may be expressed,

RO 7 41- - 1 21 	 i

li

t

1's 	ms C1C^' Lrl - I^ J [r5R + aR' ]dr3 - 21111 

l

I [r5R + aR' ]dr3

r3	rg

G

(glgl I' gl)PJ [r5R + '«R' )dr3] - ( E ri)-(Clgl)
1=3

r3

6

+ [(C1 4ii(^,141) + 2(Clgl)42 + 424 2 1( E ri)
i=3

+ 2[12 + (C1gl)1 (r5 + 
=4a)s 

+ (r5 + r4a) s1	 (5)

out of Plane Bending

Bending in the array is considered normal to the array. Therefore,

the third component equation is of interest here. Excluding higher order

terms, the desired linearized equation becomes upon extracting the third

component equation from Eq. (5),

J
P3 = ms l 

-(r 3
[C1114110 + C12410 + C13410]

l

l 	^

+ r 

[C1 

41 + C1 q2 + C1
 430]

 ) + (r3 + r ir)j	 (6)	 I
4 21 10	 22 10	 23 1 	 50	 4 

111

It should be noted again that the transformation matrix component's 	

1

C1 will contain a steady contribution and also a contribution which is a
	 I

function of the vehicle angular velocity disturbance quantities. The

latter will lead to higher order terms which may be:deleted upon expansion

I
` of the transformation expression thus preserving the linear nature of the

equation of motion.w	 _.

B
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The dependent variables of Eq. (6) may be expressed in frequency

dependent form which is useful in analyzing array frequencies as corre-

lated to those of the attitude control system. 	 For a linearized system

{I it may be assumed that the motion of the craft and array will be harmonic.

The solutions may be expressed in complex form as a frequency dependent
F

° magnitude or summation of mode magnitudes times a time dependent exponen-

tial function, l

The following solutions shall, therefore, be assumed.

(q	 IQ_ [Rio(a)le^ t 	(7a)

sr

Y
n

3 _ 	3	 Xt

(r50)	
E [R50 (^)I	 (r )e(7b) ^1

3=l
_

i

n'
(a) =	 E	 [A(X)lj	 (r 3 

)e 	 (7c)

9=1

 _ -seat	
7d(F-4 )q 	

- r3
	

(	 )

In the model chosen for this investigation, no external forcing is
tt

f

assumed to exist.	 Therefore, the term F3 consists of the elastic restor-

ing and damping forces produced by the array.	 Such forces are functions

of the deformation variables and have generally the --awe form as those
i

quantities found on the right hand side of Eq.	 (6).	 Thus, further specs- 4

fication of these terms will produce no additional information for our
a

purposes.

It is possible to derive the desired set of equations by integrating ?

Eq. (6) over the array width, then multiplying by the bending mode shape

(r3) and integrating over the array length. 	 The resulting relation is
^r

i
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a set of equations, one for each mode considered, upon which may be

applied the orthogonality principle rf normal modes (Ref. 10). The set,

therefore, produces relations which are uncoupled in the bending modes.

T

hus, integrating Eq. (6) over r4 yields,

1 P3dr4 = J { ml ^-x
3 (Q11 [410 (a)] + C12[Q%(a)] + C13[410(N)])

r4	 L

+ a ); [R50(a)]j^j(ra)] +m2 [C21[Q10())] + C22[410(^)]
J-1

	

1	
l

+ C23 [410 (a)] + A E [A(X)lj*j(r3)] r

	

jml	 J

where the terms ml and m2 are defined in Appendix B.

Multiplying Eq. (8) by Q i (r3) and integrating over r3 gives the

following set of relations.

1

^inl F [R50MIibij 
+ m2 S [A(^)]jCij)

j.1	 j=1	 I

• mlgi 1- (C11 [Qlo(a)] + C12 [410 (
X
)] + C13[Q10(a)])/

• m 
2 

a i (Q21[Q10(a)] + C2 2 [Q10 ( a)] + C23 [Q10 (x)]),	 (9)

The integral expressions ai , gi , b ij , and cij are found in Appendix B.

It should be noted that

(	 o for i#j
bij	 1 $i (r3 ) yr3)dr3

J	 l for i = j
r3

(8)



}	 «Y

R0 7 G1.-127

13

Array Torsion

An additional set of n' equations will now be derived for the elastic

torsional motion of the array. Subsequently, the six additional relations

required for analysis will be derived from rigid body considerations. The

entire set of equations represents the equations of motion for the space-

craft and contain those vehicle parameters critical to th/ dynamic behavf.or

of the craft.

The rotational motion of the array element may be examined by con-

sidering the Euler equation.

Ta a Ha	 (10)

Expanding this relation in terms of the variables previously presented

and defining the "small" element rotation as,

t	 ^a(r+r 6) J-^
ar

3 
	 al + ot2	 (11)

allows the expression for Eq. (10) as,

'rs a FTS rrl; + As 1 + fTa (c a ) + (C a ) Is + Isa

+ 42" - ("Cgl + I qd—W + [-[IS (C1g1 - q2C°ql)l`
r

Is (clgl "g2c141 ) -. - (CClgl + q n is (Clg l + q2))'

(Clg1 + q2	 2)]a+ q2) , Ra - Isq'2Clg l	r^

I

1

i

p
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+ [ (C j) 4. ^l 2 ] 18 [ (Clgl) + g 2 11	 (12)

The term Is is Cae moment of inertia matrix of the element and (is is the

rotation which is assumed to be small.

Extracting the component equation about the a 2 axis and deleting

higher order tern:3 yields,

	

T 2 - Cl22(C21g10 + C22g10 + C23n10 + a)J

	
(13)

For the lit,ear equation, the solutions may again be assumed to be of the

form,

(q10) = A[Q10 (a)]
eat
	(14a)

1

(a-) _ a2 
J

El [A(X) Yj (r3 ) eXt	 (14b)

R

i	
(Ts) = Ts e t	 (14c)	

k
3

A

	which yields upon substitution into Eq. (13), 	 a

T2 = IX 22(C211[Q10(X)l + C22[Q10(X)]

	

nl	 1
+ 

023 [Q10
 (a)] + aE [A(a)]^V^^(r3) 	 (15)	

s	J=1	 E

Eq. (15) may be multiplied by the made shape ^i (r3 ) and then successively

integrated over r4 and then r3 to give,
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F

rr

Ti, ° [X 
1 21[Ql0(X)l + C22[Q1O(N)l	 ` C23[Q10(N)l) di

i
F + X2^E=1[A(]^)l^e (16)

F

which is a set of n' equations. 	 In order to complete the equations of

motion, the rigid brdy equations must now be developed.

3,	 VEHICLE EQUATIONS OF MOTION

The translational equations for the vehicle may be derived from

Newton's second law.

4.
F	 M{t)Tr

10
(17)

h

which may be expressed in the {b} frame as

r	 MCI 
r10

(18)

4 It has been assumed that no external forces are applied on the

vehicle or array, only pure torques. 	 Therefore, both sides of Eq. (18) d

are identically zero.	 There will be no translational motion of the mass
t

center of t[;e vehicle.

The rotational equation for the vehicle may be derived from the

5
Euler relation, a

T= dt (19)
y

i

Expanded, Eq. (19) gives the matrix relation

Y

s
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T . 1141 + 1 J (r
3 + r4 ) (ms ) (rs + rb)dr4dr3

r3r4

+ J f Zs^sdr4dr3]

	
(20)

r 3 
r 
4

Expressing Eq. (20) in component form yields the relations,

T1 = 
1141 + 1 1 msr3(r3(, ) dr4dr3

r3r4

+ 1 J 
msr4r3bdr4dr3 

+	 J I11 at 2 (a(
3r3r6))dr4dr3	 (21)

r3r4	 r 3 r 4

T2 
=x241 + 1 1 

mar4r50dr4dr3

r 3 
r 4

+ 1 I ma (r4) Zadr4dr3 + J J 1226dr4dr3	 (22)

r3r4	
r3r4

.3

	

T3 = 13;1	 (23)^

Solutions may be substituted analogous to those presented in previous

sections and the integrals evaluated to give,

Tl
	 ^

I1^^Q10 (^)^ + ^2 L E [R50 (a)) i
( g

J
 + mi)

1	 ^=1

1
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1

+ ]El[A(X)]^(h^ + nJ]^

T2 	2a[Q10(a)] + X 2
	S [R50(A)liPi]ml

nl
+ ^E1CA(X)]^(t^ + u]),)

T3 Y I I3d[Q10(7)]
J

These equations along with those derived in previous sections con-

stitute the necessary set of equations for description of the appendage

and craft motion.

IV. PARAMETERS OF IMPORTANCE

1. PARAMETER CLASSIFICATION

The craft's equations of motion may now be collected and are expressed

as;

One set of n array bending equations (i - 1 to n),

Fi	
a I m,X(PRC3 3 + 1) 4 1" [R50 (a) I b

3j.4

1
+ X 

(PM 
1C33

it, + m2)JEl[A(X)]1Cij +M 2 
a 
i  (C2IN O(X)1

+ C22 tQ2 (X)] + C23 [Q3 (X)]/ mlgi (Cll[410(A)]

(24)

(2S)

(26)

3
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+ G22 [42O (X)l + G23 [Q3OM])I	 (27)

One set of n' array torsional equations (i ° 1 to n'),

T1 ° [l'(G21f4io(a)] + C2
2 [41U (1)] + c2 3 [Q1U (a)]^ d1

nl
+ A2 F. [AU)l^ei^^

J°1

One set of three component vehicle rotational equations (p ° 1 to 3),

Tp Ip
XIQpU (X)] + X2 L n [R3UMI I(g

1
 + mj)alp

j°l

n
1

+ p^a2p] + 7 [A(X)l 3 [(11 +n^)alP
J.1

+ ( ti + u1)a2pl]

Examination of equations (27) through (29) show that the following

classification of parameters may be made.

a.) Mass dependent parameters ml , mZ, u, and various inertia terms

and integrals containing such terms.

b.) Geometry dependent parameterR such as the integrals R and R',

and the array length and width.

c.) Damping factors and natural mode frequencies. Frequency para -

meter A.

d.) Mode shape dependent parameters and integrals such as-ai,

b id , ci,, di , e,,, gi , etc. defined in Appendix B.

(28)

(29)
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Of these parameters the mass and geometry dependent and possibly

natural frequencies may be computed prior to the flight. The terms to

bo measured inflight are then damping frequencies, and corresponding mode

shapes.

V. DEVELOPMENT OF MEASUREMENT SYSTEM

1. SYSTEM INSTRUMENTATION

It is now necessary to qualitatively establish those methods by

which the inflight measurement may be accomplished. 'three methods of

measurement are immediately apparent; direct video recording of appendage

dynamics, strain gages, and mechanical or piezoelectric accelerometers.

Methods have been demonstrated which allow extraction of mode shapes and

frequencies for the simple bending of beams using a video recording o€

the vibration. However, the complexity of the onboard system, and com-

plexity introduced by the bending-torsional combined vibration eliminate

this technique from further consideration.

The interpretation of data for the multiple bending and torsional

modes favors the use of the accelerometer type of instrument as opposed

to the strain gage. Mode frequencies and array displacements may be found

from the direct output of the accelerometers by passing the signal through

a frequency filtering device.

Mode shape determination will require subsequent analysis of the

apparent node conditions and amplitudes at each accelerometer station.

It is essential that a strict time history be established for accurate

measurement of phase differences between the motions at all accelerometer

locations, in addition to securing general amplitude and frequency data.
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This will assure appropriate data for the suase.ZueCtI:-determination of mode

shapes.

2. BENDING TORSIOMT, MOU CONFIGURATIONS

A preliminary knowledge of the basic mode shape configurations is

essential in the determination of accelerometer locations. Although'pre-

cise specification of these modes is impossible, and in fact what we

desire to measure, preliminary estimates as to their form may promote

Increased efficiency of the system and aid in the design and positioning

of each accelerometer. Typical first four bending mode shapes are shown

in Fig. 3, and the first four torsional mode shapes in Fig. 4.

3. SYSTEM CONFIGURATION

Although it is unclear at present how many modes will have ;eequencies

within the sensitivity range of the attitude control system (which would

permit an immediate truncation thus deleting all other modes from further

	

+-	 consideration), it may be assumed that the system of accelerometers will

have the general configuration as shown in Fig. 5, on the array surface

itself. Contrary to the simplified configuration used in the determina-

tion of the important parameters, most arrays consist of a supporting

structure (i.e. pantograph, etc.) plus :the. array proper. It is, therefore,

believed that monitoring should include: data from the array and also the

supporting structure for proper analysis: of the dynamic characteristics

of the appendage. The spacing and number of such devices will be depen-

dent on the number of modes retained aftertruncation. It is necessary to

establish an adequate representation of each of the retained modes from

	

7	 data received from the system. This dictates certain-restraints on

aelerometer„positioning. If possible,_ accelerometers should not be
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positioned on any nodal line of the retained modes of either the array or

the support. This decreases their utility by restricting the number of

modes from which data is obtained. The positioning must take into account

preliminary estimates of node locations in the complex bending and tor-

sional mode system. rig. 5 suggests a primary series of accelerometers

on each side of the elastic-torsional axis and a secondary series which

along with data from the primary series m4ty allow extraction of the com-

plex mode locations for the array. Those distances 
a
  and pi are, as

previously indicated, functions of the specific modes retained. Instrument

locations on the supporting structure will bi4 determined by requirements

similar to those for the array.

In considering the number of accelerometer positions to be used in

the primary series for the array a reasonable representation of the highest

harmonic mode shape may be acquired from data given by 2(N + 1) or 3(N + 1)

accelerometer locations depending on the accuracy desired. Here N is the

value of the highest harmonic mode retained. The secondary series which

is to be used as a complimentary system to the primary one is estimated

to require only about fifty percent of this number of positions.

4. ACCELEROMETER SAMPLING RATE

The sampling rate is a function of the frequency of the highest mode

and should have a value for each accelerometer of about 4f where f is the

frequency of the mode in cycles per second. The total data rate for the

array system is then of the order,

DATA RATE = 8f(N + 1) to 12f(N + 1)

As an example, let's assume that the fourth harmonic is the highest

mode to be retained, with an estimated frequency of about 100 
HZ
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Thia would mean that the data rate from the system would need to be,

DATA RATE = 4000 to 6000 bits per eec.

It 'would be advantageous to reduce this value. However, a detailed

analysis of expected mode shapes and frequencies would be required to

properly effect such a reduction or even investigate the feasibility of

such a reduction. Such an investigation will be included in a later study.

5. "NFLIGHT MANEUVERS

It is highly desirable to minimize any special inflight maneuvers or

deviations from the normal flight sequence. The forcing of the array

system necessary to produce vibrations in the required modes may be

accomplished by a properly timed firing sequence of the attitude control

thrusters. This would consist of an impulse torque applied about a given

control axis with a subsequent correction torque applied at a specified

time which would be determined by a modal frequency analysis. Depending

upon the orientation of the thrusters, the required torques may be applied

by any appropriate combination of thrusters. No other maneuver is uv.ces-

sary.

For data interpretations, the accelerometer system allows reasonably
i

straightforward analysis of output. The desired mode frequencies may be
	

{

extracted directly by analysis of the signal from each accelerometer lees-

tion and the determination of those frequencies to which the given 	 i

a

accelerometer is responding. The mode shapes will require geometrical

analysis of the motion at each accelerometer position and the phase

relationship between these motions. General guidance in this effort will

be extended by the numerical results of a computer simulation not yet

completed.
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VI. CONCLUSIONS

It is possible to state several interim conclusions concerning the

various aspects of the flexibility-control interaction phenomenon.

Generally, these interim conclusions represent the nature of important

parameters, measurement techniques, processing, and data retrieval and

have not been in all cases rigorously substantiated. However, this pre-

liminary work has served to indicate more clearly those areas of investi-

gation which will produce necessary data for complete design of the

inflight system which is to be accomplished in follow-on work. It is in

this context that the following conclusions are presented.

a.) Any experiment of this type is very complex and data is not

unique.

b.) The important structural parameters to the flexibility-control

interaction problem are appendage and vehicle mass and inertia

characteristics, geometrical properties, vibration damping and

frequency values, forcing frequencies, and bending and torsional

mode shapes.

c.) Those parameters which must be measured inflight are the damp-

ing modal frequencies and respective mode shapes.

d,) The nature of inflight systems and analysis of system output 	
s

favors the use of accelerometers for the determination of

frequencies and mode shapes.	 -

e.) For the structure flexibility properties, the number of

accelerometers necessary to create a useful measurement system

is dictated by the degree of the highest harmonic mode retained

in the analysi•A after truncation. It is felt that the number

sq	
-1.



should be of th., order 2(N + 1) to 3(N + 1) for the primary

series of accelerometers and about half of that value for the

secondary series. Such speculation requires further sub-

stantiation using a computer analysis of the combined bend-

ing-torsion node locations.

f.) The data rate for each accelerometer position in a function

of the frequency of the highest harmonic mode retained. It

is felt for accurate representation of the modes, a data rate

of 4f is required where f is the frequency of the highest mode

in cycles per second. This would indicate a system capability

requirement of at least 12f(N + 1) data bits per second. It

is felt that this value can be made feasible in most cases of

solar array vibration. However, this will impose certain

design restrictions on the array to be used in conjunction with

the system design.

, i	g.) Special in£light maneuvers will be a sequenced activation of
	

I^

the aL-titude control thrusters for excitation of the vibratory

modes of the array, both torsional and bending.' 	

z
h.) Data interpretation will consist of a frequency filtering of

accelerometer output and a geometrical and phase analysis of

such output for mode shape determination. Specific schemes

for such interpretation will need to be presented at a later 	
31

time.
3
I

VII. RECOMMENDATIONS

It is recommended that the following tasks be carried out in a follow—

on study:

r
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a.) A comparison of important parameters for the continuous roll

out versus the flexibly connected rigid fold out array should

be performed. Experimental aspects will be fitted to either

type to the extent possible.

b.) The spacecraft attitude control system must be modelled to

study interaction properties. This will be integrated into

previous work to develop flexibility/control interaction

phenomenon.

c.) Computer simulations will be carried out to establish a

correlation matrix for the important parameters to be

measured. Techniques for independent measurement will then

be considered.

d.) An analysis of dynamic response characteristics for combina-

tions of antisymmetric and symmetric bending and torsional

modes will be developed.

e.) Candidate measurement devices and system options will be con-

sidered to obtain a "best" set up for collecting data. Posi-

tion and implementation requirements will be included.

Criteria for evaluation of expected data will also be estab-

lished.

Several other tasks may also be considered which include the effects

of mass discontinuities, a nondimensional study of the equations of motion

to obtain a general interpretation of results through the use of the laws

of similitude, and interface and system integration effects on vehicle

power, structure, TT&C, and propulsion.
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NEW TECHNOLOGY STATEMENT

There_ are no reportable items of new technology.



APPENDIX A

POSITION VECTORS

The following vectors are necessary to describe the position of an

arbitrary element on the solar array.

(r1 F r10)

rl	{r}T (r2 + r10)	 (A. 1)

(r10)

1
r20

r2	
{b}T	

r20	
(A.2)

3
r20

Note: The vector r2 contains no steady components as {a} and {b} are

assumed to coincide in the undeformed configuration.

o

o

z

x
R

r4

r4	{a}T	o	 (A.4)

0
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0

-r	 r Tr5 0 {a	 0

—r 3
50

T

3

0

r6 m 
{n}T	 o	 (A. 6)

3
--r60

The angular velocity of the center of Miss with respect to inertial

apace is,

y

1
ql0	 #

z

q m {b}T	 q10	 (A.7)l 

(q3 + q
3

 10
a

while the rotation of the array to maintain proper solar orientation gives,

t
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One additional matrix form is useful in expressing matrix equations.

o	 -Ai	 Ai

X1	Ai	 o	 -Ai	 (A.9)

-Ai	 Al	 o

This form is required in expressing cross products such as,

Al x A2
 - {e}TA1 

x {e}TA2 = {e}TA1A2
	 (A.10)

F

3

i

s

a
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APPENDIX B	 Ili
n

y	
IMEGRAL EXPRESSIONS 	 ^I

The following integral expressions occur in the derivation of the

equations for array bending and torsion, and vehicle rigid body motion.
i
i
i

ml ( msdr4	(B.1)
r

4

M2	 1 
r 4msdr4	(B.2)	

I
r4 r

M3 
1 

(r4)2m dr4 	(B.3)

r:•

_S. 	
1 

is dr	 (B.4)	 d

r4
11 4

s2 - J r4Is dr4	
(B.5)	 €

r4

s3	

J 
I22dr4	 (B.6)

r4

ai	
J 
^i(r3)dr3	(B.7)

r3

4

0 39
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bij ° J ^i(r3)^j(r3)dr3

r3

°ij ° 1 ^j (r 3 ) ^i (r3)dr3

r3

di 
f I22^1 (r3)dr3

r3

eij 
a j i22*j(r3)^i(r3)dr3

r3

gj J r3Yi(r3)dr3
r3

(B.8)

(B.9)

(B.10)

(B.11)

(B.12)

hj	
1 

r3m2^j(r3)dr3

r3

(B.13)

a-^ 3mj 	 J 61(	 ar	 1dr3
r	

(B.14)

	

3	 t

3 i Y

h	 A

a^j(r3) 1	

A

82lar3	
(dr3	(B.15)

r3	 4	
d

s	
Pj  

I
1 Y3(r3)dr3	 (B.16)
ra

i

^

	

	 a
P
Y



t' I mPi (r3)dr3

r3

u' J s3^j (r3)dr3

r3

(8.18)

(B.17)

f	 a

4

r
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