47 research outputs found

    Effect of Interface Structure on Mechanical Properties of Advanced Composite Materials

    Get PDF
    This paper deals with the effect of interface structures on the mechanical properties of fiber reinforced composite materials. First, the background of research, development and applications on hybrid composite materials is introduced. Second, metal/polymer composite bonded structures are discussed. Then, the rationale is given for nanostructuring the interface in composite materials and structures by introducing nanoscale features such as nanopores and nanofibers. The effects of modifying matrices and nano-architecturing interfaces on the mechanical properties of nanocomposite materials are examined. A nonlinear damage model for characterizing the deformation behavior of polymeric nanocomposites is presented and the application of this model to carbon nanotube-reinforced and reactive graphite nanotube-reinforced epoxy composite materials is shown

    Robust estimation of bacterial cell count from optical density

    Get PDF
    Optical density (OD) is widely used to estimate the density of cells in liquid culture, but cannot be compared between instruments without a standardized calibration protocol and is challenging to relate to actual cell count. We address this with an interlaboratory study comparing three simple, low-cost, and highly accessible OD calibration protocols across 244 laboratories, applied to eight strains of constitutive GFP-expressing E. coli. Based on our results, we recommend calibrating OD to estimated cell count using serial dilution of silica microspheres, which produces highly precise calibration (95.5% of residuals <1.2-fold), is easily assessed for quality control, also assesses instrument effective linear range, and can be combined with fluorescence calibration to obtain units of Molecules of Equivalent Fluorescein (MEFL) per cell, allowing direct comparison and data fusion with flow cytometry measurements: in our study, fluorescence per cell measurements showed only a 1.07-fold mean difference between plate reader and flow cytometry data

    Complexity-latency tradeoff for 5G SCL polar decoder architecture

    No full text
    2

    Ultra-low-latency LPDC decoding architecture using reweighted offset min-sum algorithm

    No full text
    1

    Low-complexity and low-latency SVC decoding architecture using modified MAP-SP algorithm

    No full text
    The compressive sensing (CS) based sparse vector coding (SVC) method is one of the promising ways for the next-generation ultra-reliable and low-latency communications. In this paper, we present advanced algorithm-hardware co-optimization schemes for realizing a cost-effective SVC decoding architecture. The previous maximum a posteriori subspace pursuit (MAP-SP) algorithm is newly modified to relax the computational overheads by applying novel residual forwarding and LLR approximation schemes. A fully-pipelined parallel hardware is also developed to support the modified decoding algorithm, reducing the overall processing latency, especially at the support identification step. In addition, an advanced least-square-problem solver is presented by utilizing the parallel Cholesky decomposer design, further reducing the decoding latency with parallel updates of support values. The implementation results from a 22nm FinFET technology showed that the fully-optimized design is 9.6 times faster while improving the area efficiency by 12 times compared to the baseline realization.11Nsciescopu
    corecore