93 research outputs found

    Anonymous and EST-based microsatellite DNA markers that transfer broadly across the fig genus (Ficus, Moraceae)

    Full text link
    • Premise of the study: We developed a set of microsatellite markers for broad utility across the species-rich pantropical tree genus Ficus (fig trees). The markers were developed to study population structure, hybridization, and gene flow in neotropical species. • Methods and Results: We developed seven novel primer sets from expressed sequence tag (EST) libraries of F. citrifolia and F. popenoei (subgen. Urostigma sect. Americana) and optimized five previously developed anonymous loci for cross-species amplification. The markers were successfully tested on four species from the basal subgenus Pharmacosycea sect. Pharmaco- sycea (F. insipida, F. maxima, F. tonduzii, and F. yoponensis) and seven species of the derived subgenus Urostigma (F. citrifolia, F. colubrinae, F. costaricana, F. nymphaeifolia, F. obtusifolia, F. pertusa, and F. popenoei). The 12 markers amplified consis- tently and displayed polymorphism in all the species. • Conclusions: This set of microsatellite markers is transferable across the phylogenetic breadth of Ficus, and should therefore be useful for studies of population structure and gene flow in approximately 750 fig species worldwide.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/92471/1/Heer2012.pdf8

    Acoustic identification of Mexican bats based on taxonomic and ecological constraints on call design

    Get PDF
    1. Monitoring global biodiversity is critical for understanding responses to anthropogenic change, but biodiversity monitoring is often biased away from tropical, megadiverse areas that are experiencing more rapid environmental change. Acoustic surveys are increasingly used to monitor biodiversity change, especially for bats as they are important indicator species and most use sound to detect, localise and classify objects. However, using bat acoustic surveys for monitoring poses several challenges, particularly in mega-diverse regions. Many species lack reference recordings, some species have high call similarity or differ in call detectability, and quantitative classification tools, such as machine learning algorithms, have rarely been applied to data from these areas. 2. Here, we collate a reference call library for bat species that occur in a megadiverse country, Mexico. We use 4,685 search-phase calls from 1,378 individual sequences of 59 bat species to create automatic species identification tools generated by machine learning algorithms (Random Forest). We evaluate the improvement in species-level classification rates gained by using hierarchical classifications, reflecting either taxonomic or ecological constraints (guilds) on call design, and examine how classification rate accuracy changes at different hierarchical levels (family, genus, and guild). 3. Species-level classification of calls had a mean accuracy of 66% and the use of hierarchies improved mean species-level classification accuracy by up to 6% (species within families 72%, species within genera 71.2% and species within guilds 69.1%). Classification accuracy to family, genus and guild-level was 91.7%, 77.8% and 82.5%, respectively. 4. The bioacoustic identification tools we have developed are accurate for rapid biodiversity assessments in a megadiverse region and can also be used effectively to classify species at broader taxonomic or ecological levels. This flexibility increases their usefulness when there are incomplete species reference recordings and also offers the opportunity to characterise and track changes in bat community structure. Our results show that bat bioacoustic surveys in megadiverse countries have more potential than previously thought to monitor biodiversity changes and can be used to direct further developments of bioacoustic monitoring programs in Mexico

    All You Can Eat: High Performance Capacity and Plasticity in the Common Big-Eared Bat, Micronycteris microtis (Chiroptera: Phyllostomidae)

    Get PDF
    Ecological specialization and resource partitioning are expected to be particularly high in the species-rich communities of tropical vertebrates, yet many species have broader ecological niches than expected. In Neotropical ecosystems, Neotropical leaf-nosed bats (Phyllostomidae) are one of the most ecologically and functionally diverse vertebrate clades. Resource partitioning in phyllostomids might be achieved through differences in the ability to find and process food. We selected Micronycteris microtis, a very small (5–7 g) animalivorous phyllostomid, to explore whether broad resource use is associated with specific morphological, behavioral and performance traits within the phyllostomid radiation. We documented processing of natural prey and measured bite force in free-ranging M. microtis and other sympatric phyllostomids. We found that M. microtis had a remarkably broad diet for prey size and hardness. For the first time, we also report the consumption of vertebrates (lizards), which makes M. microtis the smallest carnivorous bat reported to date. Compared to other phyllostomids, M. microtis had the highest bite force for its size and cranial shape and high performance plasticity. Bite force and cranial shape appear to have evolved rapidly in the M. microtis lineage. High performance capacity and high efficiency in finding motionless prey might be key traits that allow M. microtis, and perhaps other species, to successfully co-exist with other gleaning bats

    Variable strength of forest stand attributes and weather conditions on the questing activity of Ixodes ricinus ticks over years in managed forests

    Get PDF
    Given the ever-increasing human impact through land use and climate change on the environment, we crucially need to achieve a better understanding of those factors that influence the questing activity of ixodid ticks, a major disease-transmitting vector in temperate forests. We investigated variation in the relative questing nymph densities of Ixodes ricinus in differently managed forest types for three years (2008–2010) in SW Germany by drag sampling. We used a hierarchical Bayesian modeling approach to examine the relative effects of habitat and weather and to consider possible nested structures of habitat and climate forces. The questing activity of nymphs was considerably larger in young forest successional stages of thicket compared with pole wood and timber stages. Questing nymph density increased markedly with milder winter temperatures. Generally, the relative strength of the various environmental forces on questing nymph density differed across years. In particular, winter temperature had a negative effect on tick activity across sites in 2008 in contrast to the overall effect of temperature across years. Our results suggest that forest management practices have important impacts on questing nymph density. Variable weather conditions, however, might override the effects of forest management practices on the fluctuations and dynamics of tick populations and activity over years, in particular, the preceding winter temperatures. Therefore, robust predictions and the detection of possible interactions and nested structures of habitat and climate forces can only be quantified through the collection of long-term data. Such data are particularly important with regard to future scenarios of forest management and climate warming

    Sexually Selected Infanticide in a Polygynous Bat

    Get PDF
    Background: Adult individuals of many species kill unrelated conspecific infants for several adaptive reasons ranging from predation or resource competition to the prevention of misdirected parental care. Moreover, infanticide can increase the reproductive success of the aggressor by killing the offspring of competitors and thereafter mating with the victimized females. This sexually selected infanticide predominantly occurs in polygynous species, with convincing evidence for primates, carnivores, equids, and rodents. Evidence for bats was predicted but lacking. Methodology/Principal Findings: Here we report the first case, to our knowledge, of sexually selected infanticide in a bat, the polygynous white-throated round-eared bat, Lophostoma silvicolum. Behavioral studies in a free-living population revealed that an adult male repeatedly attacked and injured the pups of two females belonging to his harem, ultimately causing the death of one pup. The infanticidal male subsequently mated with the mother of the victimized pup and this copulation occurred earlier than any other in his harem. Conclusions/Significance: Our findings indicate that sexually selected infanticide is more widespread than previously thought, adding bats as a new taxon performing this strategy. Future work on other bats, especially polygynous species in the tropics, has great potential to investigate the selective pressures influencing the evolution of sexually selecte

    Two Novel Parvoviruses in Frugivorous New and Old World Bats

    Get PDF
    Bats, a globally distributed group of mammals with high ecological importance, are increasingly recognized as natural reservoir hosts for viral agents of significance to human and animal health. In the present study, we evaluated pools of blood samples obtained from two phylogenetically distant bat families, in particular from flying foxes (Pteropodidae), Eidolon helvum in West Africa, and from two species of New World leaf-nosed fruit bats (Phyllostomidae), Artibeus jamaicensis and Artibeus lituratus in Central America. A sequence-independent virus discovery technique (VIDISCA) was used in combination with high throughput sequencing to detect two novel parvoviruses: a PARV4-like virus named Eh-BtPV-1 in Eidolon helvum from Ghana and the first member of a putative new genus in Artibeus jamaicensis from Panama (Aj-BtPV-1). Those viruses were circulating in the corresponding bat colony at rates of 7–8%. Aj-BtPV-1 was also found in Artibeus lituratus (5.5%). Both viruses were detected in the blood of infected animals at high concentrations: up to 10E8 and to 10E10 copies/ml for Aj-BtPV-1 and Eh-BtPV-1 respectively. Eh-BtPV-1 was additionally detected in all organs collected from bats (brain, lungs, liver, spleen, kidneys and intestine) and spleen and kidneys were identified as the most likely sites where viral replication takes place. Our study shows that bat parvoviruses share common ancestors with known parvoviruses of humans and livestock. We also provide evidence that a variety of Parvovirinae are able to cause active infection in bats and that they are widely distributed in these animals with different geographic origin, ecologies and climatic ranges

    A Systems Biology Approach Identifies Molecular Networks Defining Skeletal Muscle Abnormalities in Chronic Obstructive Pulmonary Disease

    Get PDF
    Chronic Obstructive Pulmonary Disease (COPD) is an inflammatory process of the lung inducing persistent airflow limitation. Extensive systemic effects, such as skeletal muscle dysfunction, often characterize these patients and severely limit life expectancy. Despite considerable research efforts, the molecular basis of muscle degeneration in COPD is still a matter of intense debate. In this study, we have applied a network biology approach to model the relationship between muscle molecular and physiological response to training and systemic inflammatory mediators. Our model shows that failure to co-ordinately activate expression of several tissue remodelling and bioenergetics pathways is a specific landmark of COPD diseased muscles. Our findings also suggest that this phenomenon may be linked to an abnormal expression of a number of histone modifiers, which we discovered correlate with oxygen utilization. These observations raised the interesting possibility that cell hypoxia may be a key factor driving skeletal muscle degeneration in COPD patients
    corecore