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SUMMARY 39	

1. Monitoring global biodiversity is critical for understanding responses to anthropogenic 40	

change, but biodiversity monitoring is often biased away from tropical, megadiverse 41	

areas that are experiencing more rapid environmental change. Acoustic surveys are 42	

increasingly used to monitor biodiversity change, especially for bats as they are 43	

important indicator species and most use sound to detect, localise and classify 44	

objects. However, using bat acoustic surveys for monitoring poses several 45	

challenges, particularly in mega-diverse regions. Many species lack reference 46	

recordings, some species have high call similarity or differ in call detectability, and 47	

quantitative classification tools, such as machine learning algorithms, have rarely 48	

been applied to data from these areas. 49	

2. Here, we collate a reference call library for bat species that occur in a megadiverse 50	

country, Mexico. We use 4,685 search-phase calls from 1,378 individual sequences 51	

of 59 bat species to create automatic species identification tools generated by 52	

machine learning algorithms (Random Forest). We evaluate the improvement in 53	

species-level classification rates gained by using hierarchical classifications, 54	

reflecting either taxonomic or ecological constraints (guilds) on call design, and 55	

examine how classification rate accuracy changes at different hierarchical levels 56	

(family, genus, and guild). 57	

3. Species-level classification of calls had a mean accuracy of 66% and the use of 58	

hierarchies improved mean species-level classification accuracy by up to 6% 59	

(species within families 72%, species within genera 71.2% and species within guilds 60	

69.1%). Classification accuracy to family, genus and guild-level was 91.7%, 77.8% 61	

and 82.5%, respectively.  62	

4. The bioacoustic identification tools we have developed are accurate for rapid 63	

biodiversity assessments in a megadiverse region and can also be used effectively to 64	

classify species at broader taxonomic or ecological levels. This flexibility increases 65	
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their usefulness when there are incomplete species reference recordings and also 66	

offers the opportunity to characterise and track changes in bat community structure. 67	

Our results show that bat bioacoustic surveys in megadiverse countries have more 68	

potential than previously thought to monitor biodiversity changes and can be used to 69	

direct further developments of bioacoustic monitoring programs in Mexico. 70	

Keywords: acoustic identification, guild, hierarchical classification, random forest, machine 71	

learning, Neotropical, whispering bats.  72	

73	
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INTRODUCTION 74	

Effective conservation depends on our ability to define, measure and track ecological 75	

communities through time and space (Magurran et al. 2010). Although biodiversity 76	

monitoring programmes are critical to assess the impact of anthropogenic change, many are 77	

biased towards high latitude, temperate countries (Collen et al. 2009). Megadiverse 78	

countries (e.g., Indonesia, Mexico, Zaire) cover only 34% of the Earth surface, yet they 79	

harbour 70% of the world’s biodiversity and are undergoing rapid environmental degradation 80	

(Mittermeier et al. 1997). In spite of the great conservation opportunity these hotspot regions 81	

offer, biodiversity monitoring programmes are often lacking, causing considerable knowledge 82	

gaps. 83	

Bioacoustic surveys, especially for bats, are increasingly used to survey and monitor 84	

biodiversity responses to anthropogenic change (Jones et al. 2013; Amorim et al. 2014). 85	

Echolocating bats use sound to detect, localise and classify objects (Schnitzler et al. 2003) 86	

making them detectable both remotely and non-invasively. Bats are also ideal biodiversity 87	

indicators since they have a wide range of ecological traits, different tolerances to 88	

environmental variables and play key roles in ecosystems (Jones et al. 2009; Russo & Jones 89	

2015). However, using bat acoustics as a monitoring tool poses several challenges, 90	

especially in megadiverse and tropical regions (Walters et al. 2013). First, in spite of the 91	

growing efforts to create more bat call reference recording libraries, tropical and 92	

megadiverse regions have rarely been included in such initiatives. This is compounded by 93	

recording method heterogeneity (e.g., full spectrum, frequency division, heterodyne), which 94	

makes compiling comprehensive libraries difficult (Walters et al. 2013). Such poor and 95	

uneven coverage of intra- and inter-specific variation makes Identification of bat calls for 96	

these regions challenging  97	

Second, although it is possible to identify many bat species based on their calls, 98	

phylogenetic relatedness, ecological similarities, and call plasticity have led to overlapping 99	
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structures and high call similarity among and within species in some groups (Obrist 1995; 100	

Jones & Teeling 2006). For example, species may have similar calls within families and 101	

genera (Jung et al. 2007, 2014), and ecological guild membership may also reflect foraging 102	

and echolocation behaviour (e.g., aerial insectivores, gleaners) (Denzinger & Schnitzler 103	

2013). An additional challenge is that bat species differ in detectability of their calls. Aerial 104	

insectivores typically produce loud calls of high-intensity and low frequency, whereas 105	

‘whispering’ bats (including many bats in the families Phyllostomidae, Natalidae, and 106	

Thyropteridae) often produce low-intensity, high frequency calls (Griffin 1958). However, 107	

recent findings suggest that some ‘whispering’ bat calls are more detectable than previously 108	

thought. For example, Macrophyllum macrophyllum and Artibeus jamaicensis can emit calls 109	

as loud as those of many aerial insectivores (Brinkløv et al. 2009). Otonycteris hemprichii, a 110	

passive gleaner, can also operate as an aerial hawker and can adjust its call intensity 111	

depending on foraging mode even while flying in the same habitat type (Hackett et al. 2014).  112	

Third, although acoustic species identification tools for different species are developing 113	

rapidly (e.g., European bats Walters et al. 2012; birds Stowell & Plumbley 2014), they 114	

remain rare for megadiverse regions. The immense amount of data obtained from acoustic 115	

monitoring can be daunting and automatic analytical tools are extremely useful in analysing 116	

such data (Walters et al. 2013). Bat call identification tools have been mainly developed 117	

using multivariate statistical techniques such as discriminant function analysis (e.g., 118	

Vaughan et al. 1997; Russo & Jones 2002; Avila-Flores & Fenton 2005; MacSwiney et al. 119	

2008) or machine learning algorithms (e.g., Skowronski & Harris 2006, Walters et al. 2012), 120	

the latter generally providing higher species-level classification accuracy (Armitage & Ober 121	

2010; Britzke et al. 2011; Keen et al. 2014). Machine learning algorithms have mostly been 122	

applied to classify data at one level of categorisation (e.g., species) and have rarely 123	

incorporated hierarchical information to aid classification accuracy (e.g., species within 124	

families or orders). Hierarchical classification approaches have been shown to improve 125	

general species classification accuracy for European bat calls up to 13% (Parsons & Jones 126	
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2000; Walters et al. 2012). Assigning taxa to classes within a hierarchy may reduce model 127	

complexity and minimise misclassifications outside their hierarchy (Vens et al. 2008). 128	

However, if an erroneous hierarchy is applied, then classification errors are added 129	

cumulatively across different levels, leading to a reduction in classification accuracy.  130	

A hierarchical classification approach may be useful to classify calls to broader classes (e.g., 131	

genera, families or guilds) when reference material is missing for species, or where 132	

discrimination at species-level is difficult. For example, where there is high call variability 133	

within species, or a high overlap of call parameters between species. Although identification 134	

to species is most desirable, monitoring the status of the same recognizable signal over time 135	

without specific identification may be sufficient in some situations (Redgwell et al. 2009; 136	

Armitage & Ober 2010). Finding alternatives to species-level studies is needed in 137	

megadiverse areas, which usually face considerable financial and data constraints but are a 138	

priority for rapid conservation assessments.  139	

Here, we collate a reference call library for bat species that occur in a megadiverse country 140	

to create acoustic identification tools using machine learning algorithms. We focus on 141	

Mexico because it contains one of the highest number of species in the world and has one of 142	

the highest rates of species extinction and habitat loss (Myers et al. 2000; Brooks et al. 143	

2002). We also evaluate the improvement in species-level classification rates gained by 144	

using hierarchical classifications reflecting either taxonomic or ecological constraints on call 145	

design. Our results show that accurate bioacoustic identification tools can be developed for 146	

rapid biodiversity assessments in megadiverse regions where hierarchies generally improve 147	

species-level classifications. These tools can also be used effectively to classify calls at 148	

broader levels, so increasing the usefulness of the tool when there are incomplete species 149	

reference recordings.  150	

 151	

MATERIALS AND METHODS 152	
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Reference call library 153	

We collated reference search-phase echolocation calls for bat species that occur in Mexico 154	

through a combination of field work and donated material. Field work was conducted in 155	

central and northern Mexico from June 2012 to May 2013 at 35 sites (Fig. 1a). Bats were 156	

caught with mist nets and identified to species level using field keys (Reid 1997; Medellín et 157	

al. 2008), before being released. Full spectrum, real time recordings were made from all 158	

individuals in the habitat in which they were captured using a Pettersson D1000x detector, 159	

sampling rate 500kHz, high pass filter off (Pettersson Elektronik AB, Uppsala, Sweden). 160	

Files were saved in WAV format on a flash card. We obtained 907 recordings of 39 species 161	

from 6 families (see Table S1 in Supporting Information). Additionally, 1,403 full spectrum 162	

recordings of bat calls from 87 species that occur in Mexico were donated by colleagues, 163	

giving a total of 2,310 recordings (each recording was assumed to contain one individual call 164	

sequence) from 92 species in 8 families (68% of species and 100% of families of bats 165	

occurring in Mexico). These recordings were obtained from bats released in different ways 166	

using several different real time or time-expanded full spectrum detectors, and in a range of 167	

habitats across species’ distributions (including localities outside Mexico) (Table S2). The 168	

inclusion of call variation in the dataset avoids generating biases for any particular recording 169	

situation or method (Walters et al. 2013), and provides the acoustic identification tools with 170	

more flexibility and generality (see Walters et al. 2012).   171	

Taxonomy followed Simmons (2005), but because of taxonomic changes since 2005 we 172	

assume that Natalidae contains only one species, Natalus stramineus (López-Wilchis et al. 173	

2012). Data from Molossus sinaloae and the new species M. alvarezi (González-Ruiz et al. 174	

2011) were analysed together as M. sinaloae because most of the material was recorded 175	

prior to the description of the new species. As some species are hard to identify in the field, 176	

we only used the material which were confidently identified. To examine the taxonomic and 177	

geographic coverage of the reference call library within Mexico, distribution maps were 178	

downloaded from the IUCN mammal assessments (IUCN 2012) and species richness within 179	
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each 50 km2 grid cell was estimated by overlaying and counting how many of those range 180	

maps overlap in each grid cell (Hawths Tools, Beyer, 2004). We then calculated the 181	

proportion of species both recorded and used in our classifiers from out of those potentially 182	

distributed in each cell. 183	

Acoustic Identification Tools 184	

We visually inspected all recorded sequences using the sound analysis software BatSound 185	

Pro v.3.31b (Pettersson Elektronik AB, Uppsala Sweden) to remove non search-phase calls. 186	

We distinguished search-phase calls from approach-phase and terminal-phase calls as 187	

these phase shifts are characterized by a decrease in call duration and interval, and 188	

increase in repetition rate (Schnitzler & Kalko 2001). Social calls were distinguished from 189	

echolocation calls by their duration, frequency and pattern of change over time, with social 190	

calls being more sporadic and often of a lower frequency range (Fenton 2003). In addition, 191	

bats were recorded in situations that significantly minimized the presence of social calls and 192	

approach and end-phase echolocation calls (e.g., recorded in open spaces upon release). 193	

We then automatically extracted and parameterised search-phase calls using the in-built 194	

algorithms in Sonobat v.3 (Szewczak 2010) (following methods in Walters et al. 2012). For 195	

species which used harmonics, we used measurements from the call used as the main 196	

harmonic. We measured a total of 21,064 search-phase echolocation calls from 1,692 197	

sequences and 85 species in 8 families, with each sequence assumed to be from a different 198	

individual. Material recorded in Mexico contained 16,344 calls, 1,187 sequences from 65 199	

species in 7 families across 91 different localities (Fig. 1a).  200	

We used Random Forest (RF) models (randomForest package, Liaw & Wiener 2002) to train 201	

the classifiers, rejecting species that had less than five sequences. RF models consist of a 202	

collection or ensemble of decision tree classifiers where each classifier is randomly built 203	

using a bootstrapped sample of the training dataset (Breiman 2001). Each classifier is 204	

estimated using a selection of the predictor variables (in our case call parameters) that best 205	

separate the classes of interest (e.g., species, families) at different branching splits or nodes 206	
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in the tree. RF model classifications are then derived from averages of the tree ensembles. 207	

RF models possess several advantages over other machine learning algorithms as they are 208	

not affected by heteroscedasticity or distributional errors in the data, are not sensitive to 209	

outliers or irrelevant variables, can deal with mixed data and missing variables, and are 210	

relatively simple to train using reasonable computational resources (Olden et al. 2008). We 211	

selected 27 of the relevant call parameter variables (following methods in Walters et al. 212	

2012) extracted and parameterised by Sonobat (Table S3), and ran a grid search to find the 213	

mtry value (optimal number of variables to be randomly sampled at each node). This value 214	

was allowed to range from 2-10, in steps of one. Each forest was grown to 2,000 trees and 215	

the final mtry value and number of trees were selected for their highest accuracy. The final 216	

set of parameters used was 1,000 trees and an mtry value of three. We used the coefficient 217	

of the Gini impurity index (used by the RF models to select the most informative variables at 218	

nodes during training), as an indicator of call parameter variable importance (Breiman 2001). 219	

We trained four different RF model classifiers: Classifier 1 - Species-level without a 220	

hierarchy; Classifier 2 - Species-level within a family hierarchy (see call examples in Fig. 221	

S1a-f); Classifier 3 - Species-level within a genus hierarchy (see call examples in Fig. S1g); 222	

and Classifier 4 - Species-level within a guild hierarchy, following definitions of guilds from 223	

Denzinger & Schnitzler (2013) (see call examples in Fig. S2a-e): Guild 1 represented Open 224	

space aerial foragers; Guild 2 - Edge space aerial foragers; Guild 3 -  Edge space trawling 225	

foragers; Guild 4 - Narrow space flutter detecting foragers; and Guild 5 - Narrow space 226	

passive gleaning foragers and Guild 6 - Narrow space passive/active gleaning foragers. 227	

Guild 7 - Narrow space active gleaning foragers was not included in the study because of 228	

the lack of reference material.  229	

We used five-fold cross-validation to assess the accuracy of all four RF classifiers and 230	

assigned the individual calls into the five folds by sequence rather than individual calls 231	

(Stathopoulos et al. 2014). This procedure ensured that calls from the same individual (i.e., 232	

sequence) were not used in the same training and testing run of the cross-validation to avoid 233	
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over-fitting. We set a maximum of 100 calls per species for Classifier 1 and a minimum of 20 234	

calls per species for Classifiers 2, 3 and 4, as a compromise between maximising the 235	

number of calls and balancing the datasets, since RF classifiers tend to be biased towards 236	

the majority class (species, genus, family or guild with the highest number of training calls) 237	

(Chen et al. 2004). Only the highest quality calls were selected from each sequence 238	

(determined by the signal to noise ratio given by Sonobat), until the selected number of calls 239	

was reached. However, for some species with smaller sample sizes, we continued selecting 240	

calls from sequences in descending order of quality until we had used all available data or 241	

reached the number of calls allowed (Table S4). The number of calls selected per sequence 242	

was a compromise between maximising the number of calls and avoiding over-fitting the RF 243	

models. Sample sizes after this selection process were 4,685 calls and 1,378 sequences 244	

from 8 families, 32 genera, and 59 species that occur in Mexico. See Figure S3 for an outline 245	

of the analytical procedure.  246	

As we used recordings from locations from both inside and outside of Mexico, we checked 247	

that the variation in call parameters recorded in locations outside of Mexico did not impact 248	

species classification accuracy. To investigate this, we compared model accuracy using the 249	

four classifiers of two datasets consisting of 47 species recorded from locations inside 250	

Mexico and the same species recorded from all locations. We found very little difference in 251	

classification accuracy between the two datasets. Classifier 1 had the biggest difference in 252	

classification accuracy, albeit with only 1.5% reduction in correct classification rates (67.1% 253	

and 65.6% for inside Mexico and for all locations, respectively). We therefore used 254	

recordings from outside Mexico to complement species with less than five Mexican 255	

sequences. All analyses were performed in R version 3.0.2 (R Development Core Team 256	

2013). 257	

 258	

RESULTS 259	

Database coverage 260	
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Our collated library of echolocation call recordings covered 69% of the species, 79% of the 261	

genera, and 100% of the families occurring in Mexico. Data of high enough quality to build 262	

the automatic identification tools covered 43% of the species, 51% of the genera, and 100% 263	

of the families (Table S5). There was generally a good representation of species for the 264	

identification tools within genera and families (>50%), except for Phyllostomidae, where only 265	

19% of the species were represented. Species coverage was more comprehensive within 266	

the central and northern parts of Mexico for both the library and identification tools (Fig. 1b-267	

c). 268	

 269	

Acoustic Identification Tools  270	

Overall 16 out of the 27 parameters used to train the models contributed most to all classifiers 271	

(based on a score >30 for the Gini Coefficient from the RF models) (Table S6, Fig 2a-d). 272	

Although different parameters were important for each hierarchy, the most important overall 273	

were Fc Characteristic call frequency (kHz), FCtr Frequency at the center of the call duration 274	

(kHz), FLed Frequency of the ledge (kHz), StartF Frequency at the start of a call (kHz), 275	

HFreq Highest call frequency (kHz), and FMPwr Frequency of the maximum call amplitude 276	

(kHz) (Fig. 2a-d, see Table S3 for further variable definitions).  277	

 278	

Overall mean species-level classification accuracies for Mexican bat species varied across 279	

the four classifiers between 66.0% (Classifier 1: Species-level without a hierarchy) and 280	

72.0% (Classifier 2: Species-level within a family hierarchy), with Classifiers 3 (Species-level 281	

with a genus hierarchy) and 4 (Species-level with a guild hierarchy) having accuracies of 282	

71.2% and 69.1%, respectively (Table 1).  Across all classifiers, on average the highest 283	

classification accuracies where found for species within families Natalidae (100%), 284	

Mormoopidae (94.6%), Thyropteridae (81.5%), and Emballonuridae (77.7%), with the lowest 285	

found within Noctilionidae (70.4%), Molossidae (67%), Vespertilionidae (51.5%), and 286	

Phyllostomidae (51.4%) (Fig. 3). Phyllostomid species were mostly misclassified with other 287	

phyllostomids or with vespertilionids, whereas vespertilionids were commonly misclassified 288	



Acoustic identification of Mexican bats - Zamora-Gutierrez et al 

13	
	

with other vespertilionids or with molossids (Table 1). For the ecological classifier, species 289	

within Guild 4 (narrow space flutter detecting foragers) (100%), Guild 3 (edge space trawling 290	

foragers) (74.6%), and Guild 1 (open space aerial foragers) (63.8%) had on average the 291	

highest classification rates. The lowest average classification rates for species were found 292	

within in the gleaners (Guild 5 58.5% and Guild 6 57.7%) Guild 2 (edge space aerial 293	

foragers) (54.5%) (Fig. 4).  294	

 295	

Classification accuracy at different hierarchical levels was highest at family-level with a mean 296	

of 91.7% across all families (Table 1, Fig. 3), where Natalidae and Mormoopidae had the 297	

highest classification accuracies (100% and 97.3%, respectively). Noctilionidae had the 298	

lowest classification accuracy (72.8%) and was frequently misclassified as Molossidae (17% 299	

of the calls). Genus-level mean classification accuracy was 77.8% across all genera (Table 300	

1), Natalus (Natalidae) and Rhynchonycteris (Emballonuridae) had the highest classification 301	

accuracies (100%), and 18 genera had accuracies >80% (Fig. 3). The genus Myotis yielded 302	

a classification accuracy of 73.8%, with two species over >80% (Myotis thysanodes and 303	

Myotis keaysi) and only 4 with <50%. Genera with the lowest classification accuracies 304	

(<50%) were in the Phyllostomidae and Vespertilionidae (Fig. 3). Phyllostomids were mostly 305	

misclassified as other phyllostomids, while vespertilionids were misclassified as other 306	

vespertilionids and molossids. Mean guild-level classification accuracy was 82.5% across all 307	

guilds (Table 1, Fig. 4). Guild 4 (narrow space flutter detecting foragers) had the highest 308	

classification accuracy (100%), followed by Guild 6 (88.3%) although 6% of these calls were 309	

misclassified with Guild 5. Guild 5 had the worst classification accuracy (68%), and 18% of 310	

calls were misclassified as Guild 6 (Fig. 4). 311	

 312	

DISCUSSION  313	

We have collated the most extensive bat acoustic library for a megadiverse region (all 314	

families and over half of the species occurring in Mexico) and developed the most 315	
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comprehensive bat acoustic automated species-level classifiers to date. The mean species-316	

level classification accuracy rate of 66-72% (depending on which hierarchy is chosen) is 317	

reasonable given the high level of call similarity of the bat species in this area (Walters et al. 318	

2013). The species-level classifiers also contain a large variation in accuracy rates, where 319	

some species are classified to >80% accuracy (species of Emballonuridae, Mormoopidae, 320	

Natalidae and Thyropteridae), with the poorest results overall from species of 321	

Vespertilionidae and Phyllostomidae. This suggests that acoustic monitoring may be more 322	

feasible focusing on a few species whose calls can be reliably classified.  323	

The bat call library and classifiers incorporate both extensive geographic (from 9 countries 324	

within the species range of Mexican bats) and intra-specific variation in call types (e.g., the 325	

classifiers were trained on the different search-phase echolocation call types found within 326	

molossid species, Jung et al. 2014). However, the species-level classifiers have a very low 327	

coverage of Phyllostomidae and results should be interpreted with caution. It has been 328	

traditionally assumed that whispering bats, which include all phyllostomids, echolocate at 329	

intensities that were too low for the inclusion of these species in acoustic studies. However, 330	

recent field studies of their echolocation behaviour challenged these assumptions about their 331	

echolocation characteristics (Brinkløv et al. 2009; Hackett et al. 2014). Future work should 332	

focus on collecting more reference material for the family, to better assess its potential for 333	

acoustic monitoring programmes. 334	

Our classifiers will be the most accurate in regions where there is a higher coverage of the 335	

species present, such as the less species-rich arid and semi-arid regions of Mexico. These 336	

ecosystems (e.g., xerophytic scrubland and grasslands) cover at least 40% of the territory 337	

(Rzedowski 2006), and together with other North American drylands, support some of the 338	

biggest concentrations of mammalian abundance, because bats can form colonies of several 339	

millions of individuals (O’Shea & Bogan 2003). These bat populations can provide important 340	

ecosystem services such as pollination and control of insect populations (Cleveland et al. 341	

2006; Munguía-Rosas et al. 2009). These important arid and semi-arid environments are 342	
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increasingly threatened by environmental changes (Villers-Ruiz & Trejo-Vázquez 2003; 343	

Rodríguez-Estrella 2007) and future efforts should focus on these arid areas where there are 344	

considerable information gaps. 345	

  346	

Our species-level classifier mean accuracy was similar to that of previous studies of bats for 347	

species shared with this study (Mexico - MacSwiney et al. 2008; Stathopoulos et al. 2014; 348	

West Indies - Pio et al. 2010; United States -  Skowronski & Harris 2006; Britzke et al. 2011). 349	

However, our classification accuracies were slightly lower for some species compared with 350	

previous work. This is a consequence of the higher number of classes (species) included in 351	

our classifiers compared to all previous studies. Higher numbers of species increases the 352	

similarity in the call parameters of several species. For example, we included 26 353	

vespertilionids and 8 Myotis species, compared to 6 vespertilionids and one Myotis in 354	

MacSwiney et al. (2008) and 9 vespertilionids and two Myotis in Stathopoulos et al. (2014). 355	

Our study nearly triples the number of species used compared to any other quantitative bat 356	

call classification study in the Americas or any other megadiverse tropical region in the 357	

world. We also included a wide range of ecological, technological and methodological 358	

variation in the training dataset, which on one hand increases the classification challenge, 359	

but on the other makes the classifiers more robust to real-world recording situations. In spite 360	

of the great difference in the number of species used here, we also obtained higher 361	

classification accuracies to species level and better mean accuracies than previous studies 362	

(e.g., Pio et al. 2010; Stathopoulos et al. 2014). 363	

 364	

Our use of taxonomic and ecological guild hierarchies improved mean species-level 365	

classification rates. By using hierarchical classification approaches the number of final 366	

classes is considerably reduced and misclassifications are limited to classes within the 367	

respective hierarchy (Vens et al. 2008). Mean species-level classification accuracies were 368	

most improved using a family hierarchy, closely followed by genera (72% and 71%, 369	

respectively), although not all species improved their accuracies (contrary to other studies - 370	



Acoustic identification of Mexican bats - Zamora-Gutierrez et al 

16	
	

Parsons & Jones 2000; Walters et al. 2012). The genus-level hierarchy produced the highest 371	

number of species-level classifications with >80% accuracy but for many genera not all 372	

species were included in the analysis and genus-level taxonomic names can be subject to 373	

rapid changes (Simmons 2005). This may suggest that using a genus-level hierarchy may 374	

be more problematic than a family hierarchy, especially with incomplete reference material. 375	

For example, accuracy may decrease as more species are included, whereas variation 376	

within a family may be already adequately represented. In contrast, classification to genus 377	

level may be more helpful to reduce the number of options of possible misclassifications 378	

inside the hierarchy and further methods for call identification could then be applied (e.g., 379	

visual inspection).  380	

Although we found species-level classification rates within an ecological guild-level hierarchy 381	

were worse than species-level classification rates within either taxonomic hierarchy, 382	

classification of calls to guild-level performed well and could provide a useful alternative to 383	

taxonomic-level classifiers. Gleaners, in particular the speciose family Phyllostomidae, are 384	

the most abundant and diverse in bat communities in the Americas, yet poorly represented 385	

in acoustic libraries. Our results at family and guild-level suggest that there is a good 386	

potential for accurate acoustic identification of gleaners. As more sensitive microphones with 387	

better signal/noise ratios become available, the detectability of these species will improve, as 388	

will the potential for monitoring them acoustically. Guilds 5 and 6, representing gleaning 389	

foragers, were frequently confused with each other, so these should be grouped into one 390	

class, since the main difference among them is how they use other non-echolocation cues to 391	

forage (Denzinger & Schnitzler 2013).  392	

Acoustic analysis techniques are evolving rapidly and there is a growing tendency to replace 393	

classifications based on parameters extraction with those of whole signal analysis. However, 394	

applications of these approaches have mainly focused on bird and marine mammal 395	

acoustics (e.g., Ren et al. 2009; Damoulas et al. 2010) and most bat acoustic classification 396	

tasks still represent classifications with a few parameters and further classify them using 397	



Acoustic identification of Mexican bats - Zamora-Gutierrez et al 

17	
	

manual or non-parametric techniques. Such whole signal analyses in bat acoustics are 398	

growing (Obrist et al. 2004; Skowronski & Harris 2006; Stathopoulos et al. 2014) but should 399	

be further explored. However, exploration of new approaches requires adequate reference 400	

material collected in a systematic way, controlling for variation introduced by the use of 401	

different methods, and we strongly encourage further efforts to collect comprehensive 402	

reference bat call libraries. 403	

 404	

Applications  405	

Standardized identification tools such as these, offer the opportunity for objective and 406	

repeatable identifications of monitoring ‘units’ to identify changes in populations, distributions 407	

or community structures through time and space. Furthermore, hierarchical approaches offer 408	

the flexibility to adapt the identification tools to the purpose of the study or monitoring 409	

programme and the geographic and taxonomic coverage of the reference material available. 410	

Although the accuracy reached for some groups might not be sufficient for studies targeting 411	

their particular species (e.g., Myotis spp.), the hierarchical classifiers can act as filters for 412	

large amounts of data. The use of hierarchies considerably reduces the list of species to 413	

which an unknown call could belong, thus making detailed inspections and further 414	

validations more feasible.  415	

Hierarchical classifications, in particular at family-level, could help reduce the costs of 416	

monitoring tropical bat communities, which is crucial due to the limited funding these regions 417	

often devote to conservation efforts. Despite the relatively poor classification accuracies to 418	

species-level within the guild-level hierarchy, classification to guild-level could be used to 419	

rapidly characterize ensemble/environment associations or to track changes in community 420	

structure. The hierarchical approach may be improved through the use of regional classifiers 421	

which allow the reduction of the number of classes and the improvement of classification 422	

accuracy. However, such an approach should be used with caution as least known species 423	

or those with expanding ranges could be ignored. 424	
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 425	

CONCLUSIONS 426	

Our study shows that there is more potential for bat acoustic monitoring in megadiverse 427	

countries than previously considered. Hierarchies considerably reduced the complexity of 428	

call identification at different levels and provided sufficient confidence in the classification of 429	

unknown calls into higher taxonomic levels and ecological guilds.  While the classifiers did 430	

not provide high classification accuracies for several species, they did offer the opportunity 431	

to have objective and repeatable identification of monitoring ‘units’ to implement in national 432	

acoustic monitoring programmes.  433	
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Table 1. Comparison of classification accuracies of four acoustic classifiers for Mexican bat 610	

species (n=59 species). Where Classifier 1 represents species-level without a hierarchy; 611	

Classifier 2: species-level within families; Classifier 3: species-level within genera; Classifier 612	

4: species-level within guild. Misclassification represents those classes having the most 613	

misclassifications with each other for each classifier and level, where Phyllo Phyllostomidae; 614	

Vesp Vespertilionidae; Molo Molossidae; and Noct Noctilionidae.  615	

 616	
Classifier Level Accuracy 

(range) % 
% of 
classes 
≥80% 
accuracy 

% of 
classes 
≤60% 
accuracy 

Misclassifications 

1 Species 66 (4.2-100) 29 41 Species of Phyllo with 
themselves or Vesp; Vesp 
with themselves or Molo 

2 Species 72 (0-100) 32 44 Species within families  

 Family 91.7 (72.8-100) 88 0 Noct with Molo  

3 Species 71.2 (0-100) 36 37 Species within genera 

 Genus 77.8 (0-100) 56 16 Phylo with other Phylo and 
Vesp genera; and Vesp 
with Phylo and Molo genera  

4 Species 69.1 (4.5-100) 25 44 Species within guilds 

 Guild 82.5 (68-100) 50 0 Guild 5 with Guild 6; Guild 
6 with Guild 5 

 617	

618	
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 619	

Figure 1. Spatial coverage of the number of species recorded in Mexico using a grid size of 620	

50 km2, where (a) shows recording locations in solid squares (n = 91) overlaid with bat 621	

species richness, (b) proportion of species recorded compared to potential species richness 622	

in each grid, and (c) proportion of species used in the classifiers compared to potential 623	

species richness in each grid. A gradient of light green to dark blue indicate higher number 624	

of species and higher percentages. Black solid squares represent collection sites which were 625	

sampled in this study and red solid squares represent collection sites of donated material. 626	

  627	
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 628	

 629	

Figure. 2. Echolocation call parameters (n = 27) selected to build each Random Forest 630	

classifier ranked by Gini Coefficient where (a) Classifier 1: Species-level without a hierarchy; 631	

(b) Classifier 2: Species-level within a family hierarchy; (c) Classifier 3: Species-level within a 632	

genus hierarchy; and (d) Classifier 4: Species-level within a guild hierarchy. See Table S3 633	

for parameter definitions.  634	

 635	
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 636	

Figure. 3. Random Forest percentage classification accuracies obtained for the taxonomic 637	

classifiers (Classifiers 1-3). Species-level accuracies are shown at the end of each branch 638	

for Classifier 1, 2 and 3. Classification accuracies per family and genus are shown in the 639	

middle of each branch (n = 59 species).   640	
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 641	

Figure 4. Random Forest percentage classification accuracies obtained for the ecological 642	

guild classifier (Classifier 4). Species-level accuracies are shown at the end of each branch. 643	

Classification accuracies per guild are shown in the middle of each branch (n = 59 species). 644	

Guild 1 - Open space aerial foragers; Guild 2 – Edge space aerial foragers; Guild 3 – Edge 645	

space trawling foragers; Guild 4 – Narrow space flutter detecting foragers; Guild 5 - Narrow 646	

space passive gleaning foragers and Guild 6- Narrow space passive/active gleaning 647	

foragers. 648	
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Supporting Information 649	

Additional Supporting Information may be found in the online version of this article: 650	

Table S1. Metadata for the search-phase echolocation calls collected during field work in 651	

Mexico from June 2012 to May 2013.  652	

Table S2. Metadata for the search-phase echolocation calls donated for this study.  653	

Table S3. Definitions of the 27 call parameters extracted by Sonobat v.3 used for training 654	

the Random Forest classifiers.  655	

Table S4. Number of classes included in each hierarchy of the four classifiers and number of 656	

calls used in the training process.  657	

Table S5. Taxonomic coverage of the bat call library within each family for the number of 658	

genera and species recorded / used in the classifiers. 659	

Table S6. Descriptive statistics (mean and standard deviation) for the 16 most important call 660	

parameters ranked by Random Forest Gini Coefficient measured by Sonobat for the 59 661	

species.  662	

Figure S1. Spectrograms showing the inter-specific variability of representative search- 663	

phase echolocation calls within taxonomic groups used for the classifiers.  664	

Figure S2. Spectrograms showing inter-specific variability of representative search-phase 665	

echolocation calls within ecological guilds used for the classifiers.  666	

Figure S3. Schematic representation of the protocol used to build the classifiers. 667	

 668	
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