1,303 research outputs found

    Direct activation of NADPH oxidase 2 by 2-deoxyribose-1-phosphate triggers nuclear factor kappa B-dependent angiogenesis.

    Get PDF
    AbstractAims: Deoxyribose-1-phosphate (dRP) is a proangiogenic paracrine stimulus released by cancer cells, platelets, and macrophages and acting on endothelial cells. The objective of this study was to clarify how dRP stimulates angiogenic responses in human endothelial cells.Results: Live cell imaging, electron paramagnetic resonance, pull-down of dRP-interacting proteins, followed by immunoblotting, gene silencing of different NADPH oxidases (NOXs), and their regulatory cosubunits by small interfering RNA (siRNA) transfection, and experiments with inhibitors of the sugar transporter glucose transporter 1 (GLUT1) were utilized to demonstrate that dRP acts intracellularly by directly activating the endothelial NOX2 complex, but not NOX4. Increased reactive oxygen species generation in response to NOX2 activity leads to redox-dependent activation of the transcription factor nuclear factor kappa B (NF-ÎșB), which, in turn, induces vascular endothelial growth factor receptor 2 (VEGFR2) upregulation. Using endothelial tube formation assays, gene silencing by siRNA, and antibody-based receptor inhibition, we demonstrate that the activation of NF-ÎșB and VEGFR2 is necessary for the angiogenic responses elicited by dRP. The upregulation of VEGFR2 and NOX2-dependent stimulation of angiogenesis by dRP were confirmed in excisional wound and Matrigel plug vascularization assays in vivo using NOX2−/− mice.Innovation: For the first time, we demonstrate that dRP acts intracellularly and stimulates superoxide anion generation by direct binding and activation of the NOX2 enzymatic complex.Conclusions: This study describes a novel molecular mechanism underlying the proangiogenic activity of dRP, which involves the sequential activation of NOX2 and NF-ÎșB and upregulation of VEGFR2. Antioxid. Redox Signal. 28, 110–130

    Mitochondrial phylogeography and demographic history of the Vicuña: implications for conservation

    Get PDF
    The vicuña (Vicugna vicugna; Miller, 1924) is a conservation success story, having recovered from near extinction in the 1960s to current population levels estimated at 275 000. However, lack of information about its demographic history and genetic diversity has limited both our understanding of its recovery and the development of science-based conservation measures. To examine the evolution and recent demographic history of the vicuña across its current range and to assess its genetic variation and population structure, we sequenced mitochondrial DNA from the control region (CR) for 261 individuals from 29 populations across Peru, Chile and Argentina. Our results suggest that populations currently designated as Vicugna vicugna vicugna and Vicugna vicugna mensalis comprise separate mitochondrial lineages. The current population distribution appears to be the result of a recent demographic expansion associated with the last major glacial event of the Pleistocene in the northern (18 to 22°S) dry Andes 14–12 000 years ago and the establishment of an extremely arid belt known as the 'Dry Diagonal' to 29°S. Within the Dry Diagonal, small populations of V. v. vicugna appear to have survived showing the genetic signature of demographic isolation, whereas to the north V. v. mensalis populations underwent a rapid demographic expansion before recent anthropogenic impacts

    Is the pharmacy profession innovative enough?: meeting the needs of Australian residents with chronic conditions and their carers using the nominal group technique

    Get PDF
    Background Community pharmacies are ideally located as a source of support for people with chronic conditions. Yet, we have limited insight into what innovative pharmacy services would support this consumer group to manage their condition/s. The aim of this study was to identify what innovations people with chronic conditions and their carers want from their ideal community pharmacy, and compare with what pharmacists and pharmacy support staff think consumers want. Methods We elicited ideas using the nominal group technique. Participants included people with chronic conditions, unpaid carers, pharmacists and pharmacy support staff, in four regions of Australia. Themes were identified via thematic analysis using the constant comparison method. Results Fifteen consumer/carer, four pharmacist and two pharmacy support staff groups were conducted. Two overarching themes were identified: extended scope of practice for the pharmacist and new or improved pharmacy services. The most innovative role for Australian pharmacists was medication continuance, within a limited time-frame. Consumers and carers wanted improved access to pharmacists, but this did not necessarily align with a faster or automated dispensing service. Other ideas included streamlined access to prescriptions via medication reminders, electronic prescriptions and a chronic illness card. Conclusions This study provides further support for extending the pharmacist’s role in medication continuance, particularly as it represents the consumer’s voice. How this is done, or the methods used, needs to optimise patient safety. A range of innovative strategies were proposed and Australian community pharmacies should advocate for and implement innovative approaches to improve access and ensure continuity of care

    Modular and predictable assembly of porous organic molecular crystals

    No full text
    Nanoporous molecular frameworks are important in applications such as separation, storage and catalysis. Empirical rules exist for their assembly but it is still challenging to place and segregate functionality in three-dimensional porous solids in a predictable way. Indeed, recent studies of mixed crystalline frameworks suggest a preference for the statistical distribution of functionalities throughout the pores rather than, for example, the functional group localization found in the reactive sites of enzymes. This is a potential limitation for 'one-pot' chemical syntheses of porous frameworks from simple starting materials. An alternative strategy is to prepare porous solids from synthetically preorganized molecular pores. In principle, functional organic pore modules could be covalently prefabricated and then assembled to produce materials with specific properties. However, this vision of mix-and-match assembly is far from being realized, not least because of the challenge in reliably predicting three-dimensional structures for molecular crystals, which lack the strong directional bonding found in networks. Here we show that highly porous crystalline solids can be produced by mixing different organic cage modules that self-assemble by means of chiral recognition. The structures of the resulting materials can be predicted computationally, allowing in silico materials design strategies. The constituent pore modules are synthesized in high yields on gram scales in a one-step reaction. Assembly of the porous co-crystals is as simple as combining the modules in solution and removing the solvent. In some cases, the chiral recognition between modules can be exploited to produce porous organic nanoparticles. We show that the method is valid for four different cage modules and can in principle be generalized in a computationally predictable manner based on a lock-and-key assembly between modules

    Delayed self-recognition in children with autism spectrum disorder.

    Get PDF
    This study aimed to investigate temporally extended self-awareness (awareness of one’s place in and continued existence through time) in autism spectrum disorder (ASD), using the delayed self-recognition (DSR) paradigm (Povinelli et al., Child Development 67:1540–1554, 1996). Relative to age and verbal ability matched comparison children, children with ASD showed unattenuated performance on the DSR task, despite showing significant impairments in theory-of-mind task performance, and a reduced propensity to use personal pronouns to refer to themselves. The results may indicate intact temporally extended self-awareness in ASD. However, it may be that the DSR task is not an unambiguous measure of temporally extended self-awareness and it can be passed through strategies which do not require the possession of a temporally extended self-concept

    Biodiversity Loss and the Taxonomic Bottleneck: Emerging Biodiversity Science

    Get PDF
    Human domination of the Earth has resulted in dramatic changes to global and local patterns of biodiversity. Biodiversity is critical to human sustainability because it drives the ecosystem services that provide the core of our life-support system. As we, the human species, are the primary factor leading to the decline in biodiversity, we need detailed information about the biodiversity and species composition of specific locations in order to understand how different species contribute to ecosystem services and how humans can sustainably conserve and manage biodiversity. Taxonomy and ecology, two fundamental sciences that generate the knowledge about biodiversity, are associated with a number of limitations that prevent them from providing the information needed to fully understand the relevance of biodiversity in its entirety for human sustainability: (1) biodiversity conservation strategies that tend to be overly focused on research and policy on a global scale with little impact on local biodiversity; (2) the small knowledge base of extant global biodiversity; (3) a lack of much-needed site-specific data on the species composition of communities in human-dominated landscapes, which hinders ecosystem management and biodiversity conservation; (4) biodiversity studies with a lack of taxonomic precision; (5) a lack of taxonomic expertise and trained taxonomists; (6) a taxonomic bottleneck in biodiversity inventory and assessment; and (7) neglect of taxonomic resources and a lack of taxonomic service infrastructure for biodiversity science. These limitations are directly related to contemporary trends in research, conservation strategies, environmental stewardship, environmental education, sustainable development, and local site-specific conservation. Today’s biological knowledge is built on the known global biodiversity, which represents barely 20% of what is currently extant (commonly accepted estimate of 10 million species) on planet Earth. Much remains unexplored and unknown, particularly in hotspots regions of Africa, South Eastern Asia, and South and Central America, including many developing or underdeveloped countries, where localized biodiversity is scarcely studied or described. ‘‘Backyard biodiversity’’, defined as local biodiversity near human habitation, refers to the natural resources and capital for ecosystem services at the grassroots level, which urgently needs to be explored, documented, and conserved as it is the backbone of sustainable economic development in these countries. Beginning with early identification and documentation of local flora and fauna, taxonomy has documented global biodiversity and natural history based on the collection of ‘‘backyard biodiversity’’ specimens worldwide. However, this branch of science suffered a continuous decline in the latter half of the twentieth century, and has now reached a point of potential demise. At present there are very few professional taxonomists and trained local parataxonomists worldwide, while the need for, and demands on, taxonomic services by conservation and resource management communities are rapidly increasing. Systematic collections, the material basis of biodiversity information, have been neglected and abandoned, particularly at institutions of higher learning. Considering the rapid increase in the human population and urbanization, human sustainability requires new conceptual and practical approaches to refocusing and energizing the study of the biodiversity that is the core of natural resources for sustainable development and biotic capital for sustaining our life-support system. In this paper we aim to document and extrapolate the essence of biodiversity, discuss the state and nature of taxonomic demise, the trends of recent biodiversity studies, and suggest reasonable approaches to a biodiversity science to facilitate the expansion of global biodiversity knowledge and to create useful data on backyard biodiversity worldwide towards human sustainability

    Cinteny: flexible analysis and visualization of synteny and genome rearrangements in multiple organisms

    Get PDF
    BACKGROUND: Identifying syntenic regions, i.e., blocks of genes or other markers with evolutionary conserved order, and quantifying evolutionary relatedness between genomes in terms of chromosomal rearrangements is one of the central goals in comparative genomics. However, the analysis of synteny and the resulting assessment of genome rearrangements are sensitive to the choice of a number of arbitrary parameters that affect the detection of synteny blocks. In particular, the choice of a set of markers and the effect of different aggregation strategies, which enable coarse graining of synteny blocks and exclusion of micro-rearrangements, need to be assessed. Therefore, existing tools and resources that facilitate identification, visualization and analysis of synteny need to be further improved to provide a flexible platform for such analysis, especially in the context of multiple genomes. RESULTS: We present a new tool, Cinteny, for fast identification and analysis of synteny with different sets of markers and various levels of coarse graining of syntenic blocks. Using Hannenhalli-Pevzner approach and its extensions, Cinteny also enables interactive determination of evolutionary relationships between genomes in terms of the number of rearrangements (the reversal distance). In particular, Cinteny provides: i) integration of synteny browsing with assessment of evolutionary distances for multiple genomes; ii) flexibility to adjust the parameters and re-compute the results on-the-fly; iii) ability to work with user provided data, such as orthologous genes, sequence tags or other conserved markers. In addition, Cinteny provides many annotated mammalian, invertebrate and fungal genomes that are pre-loaded and available for analysis at . CONCLUSION: Cinteny allows one to automatically compare multiple genomes and perform sensitivity analysis for synteny block detection and for the subsequent computation of reversal distances. Cinteny can also be used to interactively browse syntenic blocks conserved in multiple genomes, to facilitate genome annotation and validation of assemblies for newly sequenced genomes, and to construct and assess phylogenomic trees

    Overdose Prevention and Naloxone Prescription for Opioid Users in San Francisco

    Get PDF
    Opiate overdose is a significant cause of mortality among injection drug users (IDUs) in the United States (US). Opiate overdose can be reversed by administering naloxone, an opiate antagonist. Among IDUs, prevalence of witnessing overdose events is high, and the provision of take-home naloxone to IDUs can be an important intervention to reduce the number of overdose fatalities. The Drug Overdose Prevention and Education (DOPE) Project was the first naloxone prescription program (NPP) established in partnership with a county health department (San Francisco Department of Public Health), and is one of the longest running NPPs in the USA. From September 2003 to December 2009, 1,942 individuals were trained and prescribed naloxone through the DOPE Project, of whom 24% returned to receive a naloxone refill, and 11% reported using naloxone during an overdose event. Of 399 overdose events where naloxone was used, participants reported that 89% were reversed. In addition, 83% of participants who reported overdose reversal attributed the reversal to their administration of naloxone, and fewer than 1% reported serious adverse effects. Findings from the DOPE Project add to a growing body of research that suggests that IDUs at high risk of witnessing overdose events are willing to be trained on overdose response strategies and use take-home naloxone during overdose events to prevent deaths
    • 

    corecore