489 research outputs found

    Isolation of human monoclonal autoantibodies derived from pancreatic lymph node and peripheral blood B cells of islet autoantibody-positive patients

    Get PDF
    Aims/hypothesis Autoantibodies against pancreatic islets and infections by enteroviruses are associated with type 1 diabetes, but the specificity of immune responses within the type 1 diabetic pancreas is poorly characterised. We investigated whether pancreatic lymph nodes could provide a source of antigen-specific B cells for analysis of immune responses within the (pre)diabetic pancreas. Methods Human IgG antibodies were cloned from single B lymphocytes sorted from pancreatic lymph node cells of three organ donors positive for islet autoantibodies, and from the peripheral blood of a patient with type 1 diabetes. Antibodies to insulinoma-associated antigen 2 (IA-2), GAD65, zinc trans- porter 8 (ZnT8) and Coxsackie B virus proteins were assayed by immunoprecipitation and by immunofluorescence on pan- creatic sections. Results Human IgG antibodies (863) were successfully cloned and produced from 4,092 single B cells from lymph nodes and peripheral blood. Reactivity to the protein tyrosine phosphatase domain of the IA-2 autoantigen was detected in two cloned antibodies: one derived from a pancreatic lymph node and one from peripheral blood. Epitopes for these two antibodies were similar to each other and to those for circulat- ing antibodies in type 1 diabetes. The remaining 861 antibod- ies were negative for reactivity to IA-2, GAD65 or ZnT8 by both assays tested. Reactivity to a Coxsackie viral protein 2 was detected in one antibody derived from a peripheral blood B cell, but not from lymph nodes. Conclusions/interpretation We show evidence for the infre- quent presence of autoantigen-specific IgG+ B lymphocytes in the pancreatic-draining lymph nodes of islet autoantibody- positive individuals

    Integrating complex genomic datasets and tumour cell sensitivity profiles to address a 'simple' question: which patients should get this drug?

    Get PDF
    It is becoming increasingly apparent that cancer drug therapies can only reach their full potential through appropriate patient selection. Matching drugs and cancer patients has proven to be a complex challenge, due in large part to the substantial molecular heterogeneity inherent to human cancers. This is not only a major hurdle to the improvement of the use of current treatments but also for the development of novel therapies and the ability to steer them to the relevant clinical indications. In this commentary we discuss recent studies from Kuo et al., published this month in BMC Medicine, in which they used a panel of cancer cell lines as a model for capturing patient heterogeneity at the genomic and proteomic level in order to identify potential biomarkers for predicting the clinical activity of a novel candidate chemotherapeutic across a patient population. The findings highlight the ability of a 'systems approach' to develop a better understanding of the properties of novel candidate therapeutics and to guide clinical testing and application

    Do birds of a feather flock together? Comparing habitat preferences of piscivorous waterbirds in a lowland river catchment

    Get PDF
    Waterbirds can move into and exploit new areas of suitable habitat outside of their native range. One such example is the little egret (Egretta garzetta), a piscivorous bird which has colonised southern Britain within the last 30 years. Yet, habitat use by little egrets within Britain, and how such patterns of habitat exploitation compare with native piscivores, remains unknown. We examine overlap in habitat preferences within a river catchment between the little egret and two native species, the grey heron (Ardea cinerea) and great cormorant (Phalacrocorax carbo). All species showed strong preferences for river habitat in all seasons, with other habitat types used as auxiliary feeding areas. Seasonal use of multiple habitat types is consistent with egret habitat use within its native range. We found strong egret preference for aquatic habitats, in particular freshwaters, compared with pasture and arable agricultural habitat. Egrets showed greater shared habitat preferences with herons, the native species to which egrets are most morphologically and functionally similar. This is the first study to quantify little egret habitat preferences outside of its native range

    Impacts of climate change on plant diseases – opinions and trends

    Get PDF
    There has been a remarkable scientific output on the topic of how climate change is likely to affect plant diseases in the coming decades. This review addresses the need for review of this burgeoning literature by summarizing opinions of previous reviews and trends in recent studies on the impacts of climate change on plant health. Sudden Oak Death is used as an introductory case study: Californian forests could become even more susceptible to this emerging plant disease, if spring precipitations will be accompanied by warmer temperatures, although climate shifts may also affect the current synchronicity between host cambium activity and pathogen colonization rate. A summary of observed and predicted climate changes, as well as of direct effects of climate change on pathosystems, is provided. Prediction and management of climate change effects on plant health are complicated by indirect effects and the interactions with global change drivers. Uncertainty in models of plant disease development under climate change calls for a diversity of management strategies, from more participatory approaches to interdisciplinary science. Involvement of stakeholders and scientists from outside plant pathology shows the importance of trade-offs, for example in the land-sharing vs. sparing debate. Further research is needed on climate change and plant health in mountain, boreal, Mediterranean and tropical regions, with multiple climate change factors and scenarios (including our responses to it, e.g. the assisted migration of plants), in relation to endophytes, viruses and mycorrhiza, using long-term and large-scale datasets and considering various plant disease control methods

    A mammalianized synthetic nitroreductase gene for high-level expression

    Get PDF
    Background The nitroreductase/5-(azaridin-1-yl)-2,4-dinitrobenzamide (NTR/CB1954) enzyme/prodrug system is considered as a promising candidate for anti-cancer strategies by gene-directed enzyme prodrug therapy (GDEPT) and has recently entered clinical trials. It requires the genetic modification of tumor cells to express the E. coli enzyme nitroreductase that bioactivates the prodrug CB1954 to a powerful cytotoxin. This metabolite causes apoptotic cell death by DNA interstrand crosslinking. Enhancing the enzymatic NTR activity for CB1954 should improve the therapeutical potential of this enzyme-prodrug combination in cancer gene therapy. Methods We performed de novo synthesis of the bacterial nitroreductase gene adapting codon usage to mammalian preferences. The synthetic gene was investigated for its expression efficacy and ability to sensitize mammalian cells to CB1954 using western blotting analysis and cytotoxicity assays. Results In our study, we detected cytoplasmic protein aggregates by expressing GFP-tagged NTR in COS-7 cells, suggesting an impaired translation by divergent codon usage between prokaryotes and eukaryotes. Therefore, we generated a synthetic variant of the nitroreductase gene, called ntro, adapted for high-level expression in mammalian cells. A total of 144 silent base substitutions were made within the bacterial ntr gene to change its codon usage to mammalian preferences. The codon-optimized ntro either tagged to gfp or c-myc showed higher expression levels in mammalian cell lines. Furthermore, the ntro rendered several cell lines ten times more sensitive to the prodrug CB1954 and also resulted in an improved bystander effect. Conclusion Our results show that codon optimization overcomes expression limitations of the bacterial ntr gene in mammalian cells, thereby improving the NTR/CB1954 system at translational level for cancer gene therapy in humans

    The Mind’s Eye on Personal Profiles: A Cognitive Perspective on Profile Elements that Inform Initial Trustworthiness Assessments in Virtual Project Teams

    Get PDF
    Rusman, E., Van Bruggen, J., Sloep, P., Valcke, M., & Koper, R. (2013). The Mind’s Eye on Personal Profiles: A Cognitive Perspective on Profile Elements that Inform Initial Trustworthiness Assessments and Social Awareness in Virtual Project Teams. Computer Supported Cooperative Work (CSCW), 22(2-3), 159-179.Collaboration in virtual project teams heavily relies on interpersonal trust, for which perceived trustworthiness is an important determinant. This study provides insight in the information that trustors value to assess a trustee’s professional trustworthiness in the initial phase of a virtual project team. We expect trustors in virtual teams to value those particular information elements that provide them with relevant cues of trust warranting properties of a trustee. We identified a list of commonly highly valued information elements to inform trustworthiness assessments (n=226). We then analysed explanations for preferences with the help of a theory-grounded coding scheme. Results show that respondents value those particular information elements that provide them with multiple cues to assess the trustworthiness of a trustee. This enables them to become aware of and assess the trustworthiness of another. Information elements that provide unique cues could not be identified. Insight in these information preferences can inform the design of artefacts, such as personal profile templates, to support acquaintanceships in the initial phase of a virtual project team

    Mapping interactions with the chaperone network reveals factors that protect against tau aggregation.

    Get PDF
    A network of molecular chaperones is known to bind proteins ('clients') and balance their folding, function and turnover. However, it is often unclear which chaperones are critical for selective recognition of individual clients. It is also not clear why these key chaperones might fail in protein-aggregation diseases. Here, we utilized human microtubule-associated protein tau (MAPT or tau) as a model client to survey interactions between ~30 purified chaperones and ~20 disease-associated tau variants (~600 combinations). From this large-scale analysis, we identified human DnaJA2 as an unexpected, but potent, inhibitor of tau aggregation. DnaJA2 levels were correlated with tau pathology in human brains, supporting the idea that it is an important regulator of tau homeostasis. Of note, we found that some disease-associated tau variants were relatively immune to interactions with chaperones, suggesting a model in which avoiding physical recognition by chaperone networks may contribute to disease

    Effects of climate and snow depth on Bromus tectorum population dynamics at high elevation

    Get PDF
    Invasive plants are thought to be especially capable of range shifts or expansion in response to climate change due to high dispersal and colonization abilities. Although highly invasive throughout the Intermountain West, the presence and impact of the grass Bromus tectorum has been limited at higher elevations in the eastern Sierra Nevada, potentially due to extreme wintertime conditions. However, climate models project an upward elevational shift of climate regimes in the Sierra Nevada that could favor B. tectorum expansion. This research specifically examined the effects of experimental snow depth manipulations and interannual climate variability over 5 years on B. tectorum populations at high elevation (2,175 m). Experimentally-increased snow depth had an effect on phenology and biomass, but no effect on individual fecundity. Instead an experimentally-increased snowpack inhibited population growth in 1 year by reducing seedling emergence and early survival. A similar negative effect of increased snow was observed 2 years later. However, a strong negative effect on B. tectorum was also associated with a naturally low-snow winter, when seedling emergence was reduced by 86%. Across 5 years, winters with greater snow cover and a slower accumulation of degree-days coincided with higher B. tectorum seedling density and population growth. Thus, we observed negative effects associated with both experimentally-increased and naturally-decreased snowpacks. It is likely that the effect of snow at high elevation is nonlinear and differs from lower elevations where wintertime germination can be favorable. Additionally, we observed a doubling of population size in 1 year, which is alarming at this elevation

    Structure-guided evolution of cyan fluorescent proteins towards a quantum yield of 93%

    Get PDF
    Cyan variants of green fluorescent protein are widely used as donors in Förster resonance energy transfer experiments. The popular, but modestly bright, Enhanced Cyan Fluorescent Protein (ECFP) was sequentially improved into the brighter variants Super Cyan Fluorescent Protein 3A (SCFP3A) and mTurquoise, the latter exhibiting a high-fluorescence quantum yield and a long mono-exponential fluorescence lifetime. Here we combine X-ray crystallography and excited-state calculations to rationalize these stepwise improvements. The enhancement originates from stabilization of the seventh β-strand and the strengthening of the sole chromophore-stabilizing hydrogen bond. The structural analysis highlighted one suboptimal internal residue, which was subjected to saturation mutagenesis combined with fluorescence lifetime-based screening. This resulted in mTurquoise2, a brighter variant with faster maturation, high photostability, longer mono-exponential lifetime and the highest quantum yield measured for a monomeric fluorescent protein. Together, these properties make mTurquoise2 the preferable cyan variant of green fluorescent protein for long-term imaging and as donor for Förster resonance energy transfer to a yellow fluorescent protein

    Primary brain T-cell lymphoma of the lymphoblastic type presenting as altered mental status

    Get PDF
    The authors present a case of a 56-year-old man with altered mental status. Magnetic resonance imaging (MRI) of the brain revealed non-enhancing abnormalities on T2 and FLAIR imaging in the brainstem, cerebellum, and cerebrum. Immunohistochemisty demonstrated precursor T-cell lymphoblastic lymphoma. After treatment with methotrexate, he improved clinically without focal sensorimotor deficits and with improving orientation. MRI showed almost complete resolution of brainstem and cerebral lesions. To the authors’ knowledge, there are only five previous reports of primary central nervous system T-cell lymphoblastic lymphoma. Since treatable, it deserves consideration in patients with altered mental status and imaging abnormalities that include diffuse, non-enhancing changes with increased signal on T2-weighted images
    corecore