97 research outputs found

    Lack of Guanylate Cyclase C results in increased mortality in mice following liver injury

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Guanylate Cyclase C (GC-C) expression in the intestine plays a role in the regulation of fluid and ion transport, as well as epithelial cell apoptosis and proliferation. In the adult rat liver, GC-C expression is increased in response to injury. We hypothesized that GC-C is required for repair/recovery from liver injury.</p> <p>Methods</p> <p>We subjected wild type (WT) and GC-C deficient mice to acute liver injury with a single injection of the hepatotoxin carbon tetrachloride. Changes in the level of expression of GC-C and its ligands uroguanylin and guanylin were quantified by real-time PCR. Liver morphology, and hepatocyte necrosis, apoptosis and proliferation, were examined at 1-3 days post-injury in mice on a mixed genetic background. Survival was followed for 14 days after carbon tetrachloride injection in wild type and GC-C deficient mice on both a mixed genetic background and on an inbred C57BL6/J background.</p> <p>Results</p> <p>GC-C deficient mice on the mixed genetic background nearly all died (median survival of 5 days) following carbon tetrachloride injection while WT littermates experienced only 35% mortality. Elevated levels of TUNEL-positive hepatocyte death on post-injury day 1, increased apoptosis on day 2, and increased areas of centrilobular necrosis on days 2 and 3, were evident in livers from GC-C null mice compared to WT. Collectively these data suggest increased hepatocyte death in the GC-C null mice in the early time period after injury. This corresponds temporally with increased expression of GC-C and its ligands guanylin and uroguanylin in post-injury WT mouse liver. The hepatocyte proliferative response to injury was the same in both genotypes. In contrast, there was no difference in survival between GC-C null and WT mice on the inbred C57BL/6 J background in response to acute liver injury.</p> <p>Conclusions</p> <p>Signalling via GC-C promotes hepatocyte survival <it>in vivo </it>and is required for effective recovery from acute toxic injury to the liver in a strain-specific manner.</p

    RNOP-09: Pegylated liposomal doxorubicine and prolonged temozolomide in addition to radiotherapy in newly diagnosed glioblastoma - a phase II study

    Get PDF
    BACKGROUND: Although Temozolomide is effective against glioblastoma, the prognosis remains dismal and new regimens with synergistic activity are sought for. METHODS: In this phase-I/II trial, pegylated liposomal doxorubicin (Caelyx, PEG-Dox) and prolonged administration of Temozolomide in addition to radiotherapy was investigated in 63 patients with newly diagnosed glioblastoma. In phase-I, PEG-Dox was administered in a 3-by-3 dose-escalation regimen. In phase-II, 20 mg/m2 PEG-Dox was given once prior to radiotherapy and on days 1 and 15 of each 28-day cycle starting 4 weeks after radiotherapy. Temozolomide was given in a dose of 75 mg/m2 daily during radiotherapy (60 Gy) and 150-200 mg/m2 on days 1-5 of each 28-day cycle for 12 cycles or until disease progression. RESULTS: The toxicity of the combination of PEG-Dox, prolonged administration of Temozolomide, and radiotherapy was tolerable. The progression free survival after 12 months (PFS-12) was 30.2%, the median overall survival was 17.6 months in all patients including the ones from Phase-I. None of the endpoints differed significantly from the EORTC26981/NCIC-CE.3 data in a post-hoc statistical comparison. CONCLUSION: Together, the investigated combination is tolerable and feasible. Neither the addition of PEG-Dox nor the prolonged administration of Temozolomide resulted in a meaningful improvement of the patient's outcome as compared to the EORTC26981/NCIC-CE.3 data

    GUCY2C Opposes Systemic Genotoxic Tumorigenesis by Regulating AKT-Dependent Intestinal Barrier Integrity

    Get PDF
    The barrier separating mucosal and systemic compartments comprises epithelial cells, annealed by tight junctions, limiting permeability. GUCY2C recently emerged as an intestinal tumor suppressor coordinating AKT1-dependent crypt-villus homeostasis. Here, the contribution of GUCY2C to barrier integrity opposing colitis and systemic tumorigenesis is defined. Mice deficient in GUCY2C (Gucy2c−/−) exhibited barrier hyperpermeability associated with reduced junctional proteins. Conversely, activation of GUCY2C in mice reduced barrier permeability associated with increased junctional proteins. Further, silencing GUCY2C exacerbated, while activation reduced, chemical barrier disruption and colitis. Moreover, eliminating GUCY2C amplified, while activation reduced, systemic oxidative DNA damage. This genotoxicity was associated with increased spontaneous and carcinogen-induced systemic tumorigenesis in Gucy2c−/− mice. GUCY2C regulated barrier integrity by repressing AKT1, associated with increased junction proteins occludin and claudin 4 in mice and Caco2 cells in vitro. Thus, GUCY2C defends the intestinal barrier, opposing colitis and systemic genotoxicity and tumorigenesis. The therapeutic potential of this observation is underscored by the emerging clinical development of oral GUCY2C ligands, which can be used for chemoprophylaxis in inflammatory bowel disease and cancer

    Regulation of the polymeric immunoglobulin receptor by the classical and alternative NF-κB pathways in intestinal epithelial cells

    Get PDF
    The polymeric immunoglobulin receptor (pIgR) transports IgA antibodies across intestinal epithelial cells (IECs). Expression of pIgR is upregulated by proinflammatory signaling pathways via activation of nuclear factor-κB (NF-κB). Here, we examined the contributions of the RelA-dependent classical and RelB-dependent alternative pathways of NF-κB to pIgR regulation in the HT-29 human IEC line following stimulation with tumor necrosis factor (TNF), lipopolysaccharide (LPS; Toll-like receptor 4 (TLR4) ligand), and polyinosinic: polycytidylic acid (pIC; TLR3 ligand). Whereas induction of proinflammatory genes such as interleukin-8 (IL-8) required only RelA, pIgR expression was regulated by complex mechanisms that involved both RelA and RelB. Upregulation of pIgR expression by ligation of the lymphotoxin-β receptor suggested a direct role for the alternative NF-κB pathway. Inhibition of mitogen-activated protein kinases reduced the induction of IL-8, but enhanced the induction of pIgR by TNF and TLR signaling. Regulation of pIgR through unique signaling pathways could allow IECs to sustain high levels of IgA transport while limiting the proinflammatory responses

    A life course examination of the physical environmental determinants of physical activity behaviour: A “Determinants of Diet and Physical Activity” (DEDIPAC) umbrella systematic literature review.

    Get PDF
    Background: Participation in regular physical activity is associated with a multitude of health benefits across the life course. However, many people fail to meet PA recommendations. Despite a plethora of studies, the evidence regarding the environmental (physical) determinants of physical activity remains inconclusive. Objective: To identify the physical environmental determinants that influence PA across the life course. Methods: An online systematic literature search was conducted using MEDLINE, ISI Web of Science, Scopus and SPORTDiscus. The search was limited to studies published in English (January 2004 to April 2016). Only systematic literature reviews (SLRs) and meta-analyses (MAs) of observational studies, that investigated the association between physical determinants and physical activity outcomes, were eligible for inclusion. The extracted data were assessed on the importance of determinants, strength of evidence and methodological quality. Results: The literature search identified 28 SLRs and 3 MAs on 67 physical environmental characteristics potentially related to physical activity that were eligible for inclusion. Among preschool children, a positive association was reported between availability of backyard space and outdoor toys/equipment in the home and overall physical activity. The availability of physical activity programs and equipment within schools, and neighbourhood features such as pedestrian and cyclist safety structure were positively associated with physical activity in children and adolescents. Negative street characteristics, for example, lack of sidewalks and streetlights, were negatively associated with physical activity in adults. Inconsistent associations were reported for the majority of reviewed determinants in adults. Conclusion: This umbrella SLR provided a comprehensive overview of the physical environment determinants of physical activity across the life course and has highlighted, particularly amongst youth, a number of key determinants that may be associated with overall physical activity. Given the limited evidence drawn mostly from cross-sectional studies, longitudinal studies are needed to further explore these associations

    Increased Mitochondrial Calcium Sensitivity and Abnormal Expression of Innate Immunity Genes Precede Dopaminergic Defects in Pink1-Deficient Mice

    Get PDF
    BACKGROUND: PTEN-induced kinase 1 (PINK1) is linked to recessive Parkinsonism (EOPD). Pink1 deletion results in impaired dopamine (DA) release and decreased mitochondrial respiration in the striatum of mice. To reveal additional mechanisms of Pink1-related dopaminergic dysfunction, we studied Ca²+ vulnerability of purified brain mitochondria, DA levels and metabolism and whether signaling pathways implicated in Parkinson\u27s disease (PD) display altered activity in the nigrostriatal system of Pink1⁻/⁻ mice. METHODS AND FINDINGS: Purified brain mitochondria of Pink1⁻/⁻ mice showed impaired Ca²+ storage capacity, resulting in increased Ca²+ induced mitochondrial permeability transition (mPT) that was rescued by cyclosporine A. A subpopulation of neurons in the substantia nigra of Pink1⁻/⁻ mice accumulated phospho-c-Jun, showing that Jun N-terminal kinase (JNK) activity is increased. Pink1⁻/⁻ mice 6 months and older displayed reduced DA levels associated with increased DA turnover. Moreover, Pink1⁻/⁻ mice had increased levels of IL-1β, IL-12 and IL-10 in the striatum after peripheral challenge with lipopolysaccharide (LPS), and Pink1⁻/⁻ embryonic fibroblasts showed decreased basal and inflammatory cytokine-induced nuclear factor kappa-β (NF-κB) activity. Quantitative transcriptional profiling in the striatum revealed that Pink1⁻/⁻ mice differentially express genes that (i) are upregulated in animals with experimentally induced dopaminergic lesions, (ii) regulate innate immune responses and/or apoptosis and (iii) promote axonal regeneration and sprouting. CONCLUSIONS: Increased mitochondrial Ca²+ sensitivity and JNK activity are early defects in Pink1⁻/⁻ mice that precede reduced DA levels and abnormal DA homeostasis and may contribute to neuronal dysfunction in familial PD. Differential gene expression in the nigrostriatal system of Pink1⁻/⁻ mice supports early dopaminergic dysfunction and shows that Pink1 deletion causes aberrant expression of genes that regulate innate immune responses. While some differentially expressed genes may mitigate neurodegeneration, increased LPS-induced brain cytokine expression and impaired cytokine-induced NF-κB activation may predispose neurons of Pink1⁻/⁻ mice to inflammation and injury-induced cell death
    corecore