164 research outputs found

    Inspiratory muscle training reduces blood lactate concentration during volitional hyperpnoea

    Get PDF
    Although reduced blood lactate concentrations ([lac−]B) have been observed during whole-body exercise following inspiratory muscle training (IMT), it remains unknown whether the inspiratory muscles are the source of at least part of this reduction. To investigate this, we tested the hypothesis that IMT would attenuate the increase in [lac−]B caused by mimicking, at rest, the breathing pattern observed during high-intensity exercise. Twenty-two physically active males were matched for 85% maximal exercise minute ventilation (V˙Emax) and divided equally into an IMT or a control group. Prior to and following a 6 week intervention, participants performed 10 min of volitional hyperpnoea at the breathing pattern commensurate with 85% V˙Emax

    Testing hypotheses for the function of the carnivoran baculum using finite-element analysis

    Get PDF
    The baculum (os penis) is a mineralized bone within the glans of the mammalian penis and is one of the most morphologically diverse structures in the mammal skeleton. Recent experimental work provides compelling evidence for sexual selection shaping the baculum, yet the functional mechanism by which this occurs remains unknown. Previous studies have tested biomechanical hypotheses for the role of the baculum based on simple metrics such as length and diameter, ignoring the wealth of additional shape complexity present. For the first time, to our knowledge, we apply a computational simulation approach (finite-element analysis; FEA) to quantify the three-dimensional biomechanical performance of carnivoran bacula (n = 74) based upon high-resolution micro-computed tomography scans. We find a marginally significant positive correlation between sexual size dimorphism and baculum stress under compressive loading, counter to the ‘vaginal friction’ hypothesis of bacula becoming more robust to overcome resistance during initial intromission. However, a highly significant negative relationship exists between intromission duration and baculum stress under dorsoventral bending. Furthermore, additional FEA simulations confirm that the presence of a ventral groove would reduce deformation of the urethra. We take this as evidence in support of the ‘prolonged intromission’ hypothesis, suggesting the carnivoran baculum has evolved in response to pressures on the duration of copulation and protection of the urethra

    Phenotypic Overlap between MMP-13 and the Plasminogen Activation System during Wound Healing in Mice

    Get PDF
    BACKGROUND: Proteolytic degradation of extracellular matrix is a crucial step in the healing of incisional skin wounds. Thus, healing of skin wounds is delayed by either plasminogen-deficiency or by treatment with the broad-spectrum metalloproteinase (MP) inhibitor Galardin alone, while the two perturbations combined completely prevent wound healing. Both urokinase-type plasminogen activator and several matrix metallo proteinases (MMPs), such as MMP-3, -9 and -13, are expressed in the leading-edge keratinocytes of skin wounds, which may account for this phenotypic overlap between these classes of proteases. METHODOLOGY: To further test that hypothesis we generated Mmp13;Plau and Mmp13;Plg double-deficient mice in a cross between Mmp13- and Plau-deficient mice as well as Mmp13- and Plg-deficient mice. These mice were examined for normal physiology in a large cohort study and in a well-characterized skin wound healing model, in which we made incisional 20 mm-long full-thickness skin wounds. PRINCIPAL FINDINGS: While mice that are deficient in Mmp13 have a mean healing time indistinguishable to wild-type mice, wound healing in both Plau- and Plg-deficient mice is significantly delayed. Histological analysis of healed wounds revealed a significant increase in keratin 10/14 immunoreactive layers of kerationcytes in the skin surface in Mmp13;Plau double-deficient mice. Furthermore, we observe, by immunohistological analysis, an aberrant angiogenic pattern during wound healing induced by Plau-deficiency, which has not previously been described. CONCLUSIONS: We demonstrate a phenotypic overlap, defined as an additional delay in wound healing in the double-deficient mice compared to the individual single-deficient mice, between MMP-13 and the plasminogen activation system in the process of wound healing, but not during gestation and in postnatal development. Thus, a dual targeting of uPA and MMP-13 might be a possible future strategy in designing therapies aimed at tissue repair or other pathological processes, such as cancer invasion, where proteolytic degradation is a hallmark

    Crack formation and prevention in colloidal drops

    Get PDF
    Crack formation is a frequent result of residual stress release from colloidal films made by the evaporation of colloidal droplets containing nanoparticles. Crack prevention is a significant task in industrial applications such as painting and inkjet printing with colloidal nanoparticles. Here, we illustrate how colloidal drops evaporate and how crack generation is dependent on the particle size and initial volume fraction, through direct visualization of the individual colloids with confocal laser microscopy. To prevent crack formation, we suggest use of a versatile method to control the colloid-polymer interactions by mixing a nonadsorbing polymer with the colloidal suspension, which is known to drive gelation of the particles with short-range attraction. Gelation-driven crack prevention is a feasible and simple method to obtain crack-free, uniform coatings through drying-mediated assembly of colloidal nanoparticlesopen0

    Plasminogen binding and activation at the breast cancer cell surface: the integral role of urokinase activity

    Get PDF
    INTRODUCTION: The regulation of extracellular proteolytic activity via the plasminogen activation system is complex, involving numerous activators, inhibitors, and receptors. Previous studies on monocytic and colon cell lines suggest that plasmin pre-treatment can increase plasminogen binding, allowing the active enzyme to generate binding sites for its precursor. Other studies have shown the importance of pre-formed receptors such as annexin II heterotetramer. However, few studies have used techniques that exclusively characterise cell-surface events and these mechanisms have not been investigated at the breast cancer cell surface. METHODS: We have studied plasminogen binding to MCF-7 in which urokinase plasminogen activator receptor (uPAR) levels were upregulated by PMA (12-O-tetradecanoylphorbol-13-acetate) stimulation, allowing flexible and transient modulation of cell-surface uPA. Similar experiments were also performed using MDA-MB-231 cells, which overexpress uPAR/uPA endogenously. Using techniques that preserve cell integrity, we characterise the role of uPA as both a plasminogen receptor and activator and quantify the relative contribution of pre-formed and cryptic plasminogen receptors to plasminogen binding. RESULTS: Cell-surface plasminogen binding was significantly enhanced in the presence of elevated levels of uPA in an activity-dependent manner and was greatly attenuated in the presence of the plasmin inhibitor aprotinin. Pre-formed receptors were also found to contribute to increased plasminogen binding after PMA stimulation and to co-localise with uPA/uPAR and plasminogen. Nevertheless, a relatively modest increase in plasminogen-binding capacity coupled with an increase in uPA led to a dramatic increase in the proteolytic capacity of these cells. CONCLUSION: We show that the majority of lysine-dependent plasminogen binding to breast cancer cells is ultimately regulated by plasmin activity and is dependent on the presence of significant levels of active uPA. The existence of a proteolytic positive feedback loop in plasminogen activation has profound implications for the ability of breast cancer cells expressing high amounts of uPA to accumulate a large proteolytic capacity at the cell surface, thereby conferring invasive potential

    Measuring efficiency of innovation using combined Data Envelopment Analysis and Structural Equation Modeling:empirical study in EU regions

    Get PDF
    The main aim of this paper is to investigate the impact of patent applications, development level, employment level and degree of technological diversity on innovation efficiency. Innovation efficiency is derived by relating innovation inputs and innovation outputs. Expenditures in Research and Development and Human Capital stand for innovation inputs. Technological knowledge diffusion that comes from spatial and technological neighborhood stands for innovation output. We derive innovation efficiency using Data Envelopment Analysis for 192 European regions for a 12-year period (1995–2006). We also examine the impact of patents production, development and employment level and the level of technological diversity on innovation efficiency using Structural Equation Modeling. This paper contributes a method of innovation efficiency estimation in terms of regional knowledge spillovers and causal relationship of efficiency measurement criteria. The study reveals that the regions presenting high innovation activities through patents production have higher innovation efficiency. Additionally, our findings show that the regions characterized by high levels of employment achieve innovation sources exploitation efficiently. Moreover, we find that the level of regional development has both a direct and indirect effect on innovation efficiency. More accurately, transition and less developed regions in terms of per capita GDP present high levels of efficiency if they innovate in specific and limited technological fields. On the other hand, the more developed regions can achieve high innovation efficiency if they follow a more decentralized innovation policy

    Estimating Mass Properties of Dinosaurs Using Laser Imaging and 3D Computer Modelling

    Get PDF
    Body mass reconstructions of extinct vertebrates are most robust when complete to near-complete skeletons allow the reconstruction of either physical or digital models. Digital models are most efficient in terms of time and cost, and provide the facility to infinitely modify model properties non-destructively, such that sensitivity analyses can be conducted to quantify the effect of the many unknown parameters involved in reconstructions of extinct animals. In this study we use laser scanning (LiDAR) and computer modelling methods to create a range of 3D mass models of five specimens of non-avian dinosaur; two near-complete specimens of Tyrannosaurus rex, the most complete specimens of Acrocanthosaurus atokensis and Strutiomimum sedens, and a near-complete skeleton of a sub-adult Edmontosaurus annectens. LiDAR scanning allows a full mounted skeleton to be imaged resulting in a detailed 3D model in which each bone retains its spatial position and articulation. This provides a high resolution skeletal framework around which the body cavity and internal organs such as lungs and air sacs can be reconstructed. This has allowed calculation of body segment masses, centres of mass and moments or inertia for each animal. However, any soft tissue reconstruction of an extinct taxon inevitably represents a best estimate model with an unknown level of accuracy. We have therefore conducted an extensive sensitivity analysis in which the volumes of body segments and respiratory organs were varied in an attempt to constrain the likely maximum plausible range of mass parameters for each animal. Our results provide wide ranges in actual mass and inertial values, emphasizing the high level of uncertainty inevitable in such reconstructions. However, our sensitivity analysis consistently places the centre of mass well below and in front of hip joint in each animal, regardless of the chosen combination of body and respiratory structure volumes. These results emphasize that future biomechanical assessments of extinct taxa should be preceded by a detailed investigation of the plausible range of mass properties, in which sensitivity analyses are used to identify a suite of possible values to be tested as inputs in analytical models

    Mammary stem cells, self-renewal pathways, and carcinogenesis

    Get PDF
    The mammary gland epithelial components are thought to arise from stem cells that undergo both self-renewal and differentiation. Self-renewal has been shown to be regulated by the Hedgehog, Notch, and Wnt pathways and the transcription factor B lymphoma Mo-MLV insertion region 1 (Bmi-1). We review data about the existence of stem cells in the mammary gland and the pathways regulating the self-renewal of these cells. We present evidence that deregulation of the self-renewal in stem cells/progenitors might be a key event in mammary carcinogenesis. If 'tumor stem cells' are inherently resistant to current therapies, targeting stem cell self-renewal pathways might provide a novel approach for breast cancer treatment

    Genome-Wide Analysis of Transcriptional Reprogramming in Mouse Models of Acute Myeloid Leukaemia

    Get PDF
    Acute leukaemias are commonly caused by mutations that corrupt the transcriptional circuitry of haematopoietic stem/progenitor cells. However, the mechanisms underlying large-scale transcriptional reprogramming remain largely unknown. Here we investigated transcriptional reprogramming at genome-scale in mouse retroviral transplant models of acute myeloid leukaemia (AML) using both gene-expression profiling and ChIP-sequencing. We identified several thousand candidate regulatory regions with altered levels of histone acetylation that were characterised by differential distribution of consensus motifs for key haematopoietic transcription factors including Gata2, Gfi1 and Sfpi1/Pu.1. In particular, downregulation of Gata2 expression was mirrored by abundant GATA motifs in regions of reduced histone acetylation suggesting an important role in leukaemogenic transcriptional reprogramming. Forced re-expression of Gata2 was not compatible with sustained growth of leukaemic cells thus suggesting a previously unrecognised role for Gata2 in downregulation during the development of AML. Additionally, large scale human AML datasets revealed significantly higher expression of GATA2 in CD34+ cells from healthy controls compared with AML blast cells. The integrated genome-scale analysis applied in this study represents a valuable and widely applicable approach to study the transcriptional control of both normal and aberrant haematopoiesis and to identify critical factors responsible for transcriptional reprogramming in human cancer
    corecore