100 research outputs found

    Transmembrane helix dynamics of bacterial chemoreceptors supports a piston model of signalling.

    Get PDF
    Transmembrane α-helices play a key role in many receptors, transmitting a signal from one side to the other of the lipid bilayer membrane. Bacterial chemoreceptors are one of the best studied such systems, with a wealth of biophysical and mutational data indicating a key role for the TM2 helix in signalling. In particular, aromatic (Trp and Tyr) and basic (Arg) residues help to lock α-helices into a membrane. Mutants in TM2 of E. coli Tar and related chemoreceptors involving these residues implicate changes in helix location and/or orientation in signalling. We have investigated the detailed structural basis of this via high throughput coarse-grained molecular dynamics (CG-MD) of Tar TM2 and its mutants in lipid bilayers. We focus on the position (shift) and orientation (tilt, rotation) of TM2 relative to the bilayer and how these are perturbed in mutants relative to the wildtype. The simulations reveal a clear correlation between small (ca. 1.5 Å) shift in position of TM2 along the bilayer normal and downstream changes in signalling activity. Weaker correlations are seen with helix tilt, and little/none between signalling and helix twist. This analysis of relatively subtle changes was only possible because the high throughput simulation method allowed us to run large (n = 100) ensembles for substantial numbers of different helix sequences, amounting to ca. 2000 simulations in total. Overall, this analysis supports a swinging-piston model of transmembrane signalling by Tar and related chemoreceptors

    Wash durability and optimal drying regimen of four brands of long-lasting insecticide-treated nets after repeated washing under tropical conditions

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The current study was undertaken to determine the optimal wash-drying regimen and the effects of different washing procedures on the efficacy, and durability of four brands of newly introduced long-lasting insecticide-treated nets (LLINs) under tropical conditions.</p> <p>Methods</p> <p>In the current study, the following four LLINs were tested: Olyset<sup>®</sup>, PermaNet <sup>®</sup>2.0, BASF<sup>® </sup>and TNT<sup>®</sup>. Nets were divided into three sets; one set was washed by hand rubbing and air-dried either hanging or spread on the ground in direct sunlight or hanging or spread on the ground under the shade. A second set was washed using the WHO protocol (machine) and the third set was washed by beating the nets on rocks. The biological activities of the nets were assessed by a three-minute bioassay cone test and the residual insecticide contents were determined using high performance liquid chromatography (HPLC) procedure.</p> <p>Results</p> <p>Nets that were dried hanging under the shade retained more insecticide, 62.5% and recorded higher mortality compared to nets which were dried lying on the ground in direct sunlight 58.8%, nets dried under the shade spread on the ground 56.3%, and 57.8% for nets dried hanging in direct sunlight. It was also observed that nets washed by the standard WHO protocol, retained more insecticide and were more effective in killing mosquitoes compared to nets washed by local methods of hand rubbing and beating on rocks. There were significant differences between drying regimens (p < 0.0001) and between washing procedures (p < 0.001) respectively. However, the effect of net type was statistically insignificant. The statistical differences on individual nets were also compared, for PermaNet<sup>® </sup>and TNT there were no significant differences observed between the four drying regimens (<it>p </it>= 0.7944 and 0.4703) respectively). For BASF and Olyset, the differences were significant (p < 0.001 and p > 0.0001).</p> <p>Conclusion</p> <p>The results of this study suggest that washing and drying regimen influence the insecticidal activity of LLINs. The standard WHOPES washing protocol underestimates the amount of insecticide washed from LLINs compared to the abrasive washing procedures that are used in the field. This suggests that there is need to educate net users to adopt a more gentle washing procedure while handling LLINs. The education should accompany net distribution campaigns.</p

    Type 1 Diabetes can present before the age of 6 months and is characterised by autoimmunity and rapid loss of beta-cells

    Get PDF
    This is the final version. Available on open access from Springer Verlag via the DOI in this recordAims/hypothesis Diabetes diagnosed <6 months is usually monogenic. However, 10-15% of cases do not have a pathogenic variant in one of the 26 known neonatal diabetes genes. We characterised infants diagnosed <6 months without a pathogenic variant to assess whether polygenic type 1 diabetes could arise at very early ages. Methods We studied 166 individuals diagnosed <6 months in whom pathogenic variants in all 26 known genes had been excluded and compared them to individuals with monogenic neonatal diabetes (n=164) or type 1 diabetes diagnosed at 6-24 months (n=152). We assessed the type 1 diabetes genetic risk score (T1D-GRS), islet autoantibodies, C-peptide and clinical features. Results We found an excess of patients with high T1D-GRS; 38% (63/166) had a T1D-GRS> 95th centile of healthy controls where 5% (8/166) would be expected if all were monogenic (p<0.0001). Individuals with a high T1D-GRS had a similar rate of autoantibody positivity to type 1 diabetes diagnosed between 6 and 24 months (41% vs. 58%, p=0.2), and had markedly reduced C-peptide (median <3pmol/L within 1 year of diagnosis), reflecting rapid loss of insulin secretion. These individuals also had reduced birthweights (median z-score -0.89) which were lowest in those diagnosed <3 months (-1.98). Conclusions/Interpretation We provide strong evidence that type 1 diabetes can present before age 6 months based on individuals with this extreme-early onset diabetes subtype having the classic features of childhood type 1 diabetes; high genetic risk, autoimmunity and rapid beta-cell loss. The early onset association with reduced birthweight raises the possibility that for some individuals there was reduced insulin secretion in utero. Comprehensive genetic testing for all neonatal diabetes genes remains essential for all individuals diagnosed with diabetes <6 months.Diabetes Research and Wellness Foundatio

    Long-Range Intra-Protein Communication Can Be Transmitted by Correlated Side-Chain Fluctuations Alone

    Get PDF
    Allosteric regulation is a key component of cellular communication, but the way in which information is passed from one site to another within a folded protein is not often clear. While backbone motions have long been considered essential for long-range information conveyance, side-chain motions have rarely been considered. In this work, we demonstrate their potential utility using Monte Carlo sampling of side-chain torsional angles on a fixed backbone to quantify correlations amongst side-chain inter-rotameric motions. Results indicate that long-range correlations of side-chain fluctuations can arise independently from several different types of interactions: steric repulsions, implicit solvent interactions, or hydrogen bonding and salt-bridge interactions. These robust correlations persist across the entire protein (up to 60 Ã… in the case of calmodulin) and can propagate long-range changes in side-chain variability in response to single residue perturbations

    Cell-Surface Marker Signatures for the Isolation of Neural Stem Cells, Glia and Neurons Derived from Human Pluripotent Stem Cells

    Get PDF
    Neural induction of human pluripotent stem cells often yields heterogeneous cell populations that can hamper quantitative and comparative analyses. There is a need for improved differentiation and enrichment procedures that generate highly pure populations of neural stem cells (NSC), glia and neurons. One way to address this problem is to identify cell-surface signatures that enable the isolation of these cell types from heterogeneous cell populations by fluorescence activated cell sorting (FACS).We performed an unbiased FACS- and image-based immunophenotyping analysis using 190 antibodies to cell surface markers on naïve human embryonic stem cells (hESC) and cell derivatives from neural differentiation cultures. From this analysis we identified prospective cell surface signatures for the isolation of NSC, glia and neurons. We isolated a population of NSC that was CD184(+)/CD271(-)/CD44(-)/CD24(+) from neural induction cultures of hESC and human induced pluripotent stem cells (hiPSC). Sorted NSC could be propagated for many passages and could differentiate to mixed cultures of neurons and glia in vitro and in vivo. A population of neurons that was CD184(-)/CD44(-)/CD15(LOW)/CD24(+) and a population of glia that was CD184(+)/CD44(+) were subsequently purified from cultures of differentiating NSC. Purified neurons were viable, expressed mature and subtype-specific neuronal markers, and could fire action potentials. Purified glia were mitotic and could mature to GFAP-expressing astrocytes in vitro and in vivo.These findings illustrate the utility of immunophenotyping screens for the identification of cell surface signatures of neural cells derived from human pluripotent stem cells. These signatures can be used for isolating highly pure populations of viable NSC, glia and neurons by FACS. The methods described here will enable downstream studies that require consistent and defined neural cell populations

    Spatial navigation deficits — overlooked cognitive marker for preclinical Alzheimer disease?

    Get PDF
    Detection of incipient Alzheimer disease (AD) pathophysiology is critical to identify preclinical individuals and target potentially disease-modifying therapies towards them. Current neuroimaging and biomarker research is strongly focused in this direction, with the aim of establishing AD fingerprints to identify individuals at high risk of developing this disease. By contrast, cognitive fingerprints for incipient AD are virtually non-existent as diagnostics and outcomes measures are still focused on episodic memory deficits as the gold standard for AD, despite their low sensitivity and specificity for identifying at-risk individuals. This Review highlights a novel feature of cognitive evaluation for incipient AD by focusing on spatial navigation and orientation deficits, which are increasingly shown to be present in at-risk individuals. Importantly, the navigation system in the brain overlaps substantially with the regions affected by AD in both animal models and humans. Notably, spatial navigation has fewer verbal, cultural and educational biases than current cognitive tests and could enable a more uniform, global approach towards cognitive fingerprints of AD and better cognitive treatment outcome measures in future multicentre trials. The current Review appraises the available evidence for spatial navigation and/or orientation deficits in preclinical, prodromal and confirmed AD and identifies research gaps and future research priorities

    Outer membrane protein folding from an energy landscape perspective

    Get PDF
    The cell envelope is essential for the survival of Gram-negative bacteria. This specialised membrane is densely packed with outer membrane proteins (OMPs), which perform a variety of functions. How OMPs fold into this crowded environment remains an open question. Here, we review current knowledge about OFMP folding mechanisms in vitro and discuss how the need to fold to a stable native state has shaped their folding energy landscapes. We also highlight the role of chaperones and the β-barrel assembly machinery (BAM) in assisting OMP folding in vivo and discuss proposed mechanisms by which this fascinating machinery may catalyse OMP folding

    Behavioral correlations across activity, mating, exploration, aggression, and antipredator contexts in the European house cricket, Acheta domesticus

    Get PDF
    Recently, there has been increasing interest in behavioral syndrome research across a range of taxa. Behavioral syndromes are suites of correlated behaviors that are expressed either within a given behavioral context (e. g., mating) or between different contexts (e. g., foraging and mating). Syndrome research holds profound implications for animal behavior as it promotes a holistic view in which seemingly autonomous behaviors may not evolve independently, but as a "suite" or "package." We tested whether laboratory-reared male and female European house crickets, Acheta domesticus, exhibited behavioral syndromes by quantifying individual differences in activity, exploration, mate attraction, aggressiveness, and antipredator behavior. To our knowledge, our study is the first to consider such a breadth of behavioral traits in one organism using the syndrome framework. We found positive correlations across mating, exploratory, and antipredatory contexts, but not aggression and general activity. These behavioral differences were not correlated with body size or condition, although age explained some of the variation in motivation to mate. We suggest that these across-context correlations represent a boldness syndrome as individual risk-taking and exploration was central to across-context mating and antipredation correlations in both sexes. © Springer-Verlag 2009
    • …
    corecore