58 research outputs found

    Reducing nitrous oxide emissions by changing N fertiliser use from calcium ammonium nitrate (CAN) to urea based formulations

    Get PDF
    This research was financially supported under the National Development Plan, through the Research Stimulus Fund, administered by the Department of Agriculture, Food and the Marine (Grant numbers RSF10-/RD/SC/716 and RSF11S138) and from the Department of Agriculture and Rural Development (Ref: DARD Evidence and Innovation project 13/04/06) for Northern Ireland. The first author gratefully acknowledges funding received from the Teagasc Walsh Fellowship Scheme (Ref: 2012005).peer-reviewedThe accelerating use of synthetic nitrogen (N) fertilisers, to meet the world's growing food demand, is the primary driver for increased atmospheric concentrations of nitrous oxide (N2O). The IPCC default emission factor (EF) for N2O from soils is 1% of the N applied, irrespective of its form. However, N2O emissions tend to be higher from nitrate-containing fertilisers e.g. calcium ammonium nitrate (CAN) compared to urea, particularly in regions, which have mild, wet climates and high organic matter soils. Urea can be an inefficient N source due to NH3 volatilisation, but nitrogen stabilisers (urease and nitrification inhibitors) can improve its efficacy. This study evaluated the impact of switching fertiliser formulation from calcium ammonium nitrate (CAN) to urea-based products, as a potential mitigation strategy to reduce N2O emissions at six temperate grassland sites on the island of Ireland. The surface applied formulations included CAN, urea and urea with the urease inhibitor N-(n-butyl) thiophosphoric triamide (NBPT) and/or the nitrification inhibitor dicyandiamide (DCD). Results showed that N2O emissions were significantly affected by fertiliser formulation, soil type and climatic conditions. The direct N2O emission factor (EF) from CAN averaged 1.49% overall sites, but was highly variable, ranging from 0.58% to 3.81. Amending urea with NBPT, to reduce ammonia volatilisation, resulted in an average EF of 0.40% (ranging from 0.21 to 0.69%)-compared to an average EF of 0.25% for urea (ranging from 0.1 to 0.49%), with both fertilisers significantly lower and less variable than CAN. Cumulative N2O emissions from urea amended with both NBPT and DCD were not significantly different from background levels. Switching from CAN to stabilised urea formulations was found to be an effective strategy to reduce N2O emissions, particularly in wet, temperate grassland.Department of Agriculture and Rural Development for Northern IrelandTeagasc Walsh Fellowship ProgrammeDepartment of Agriculture, Food and the Marin

    International consensus on risk management of diabetic ketoacidosis in patients with type 1 diabetes treated with sodium-glucose cotransporter (SGLT) inhibitors

    Get PDF
    Sodium-glucose cotransporter (SGLT) inhibitors are new oral antidiabetes medications shown to effectively reduce glycated hemoglobin (A1C) and glycemic variability, blood pressure, and body weight without intrinsic properties to cause hypoglycemia in people with type 1 diabetes. However, recent studies, particularly in individuals with type 1 diabetes, have demonstrated increases in the absolute risk of diabetic ketoacidosis (DKA). Some cases presented with near-normal blood glucose levels or mild hyperglycemia, complicating the recognition/diagnosis of DKAand potentially delaying treatment. Several SGLT inhibitors are currently under review by the U.S. Food and Drug Administration and European regulatory agencies as adjuncts to insulin therapy in people with type 1 diabetes. Strategies must be developed and disseminated to the medical community to mitigate the associated DKA risk. This Consensus Report reviews current data regarding SGLT inhibitor use and provides recommendations to enhance the safety of SGLT inhibitors in people with type 1 diabetes

    Clinical targets for continuous glucose monitoring data interpretation : recommendations from the international consensus on time in range

    Get PDF
    Improvements in sensor accuracy, greater convenience and ease of use, and expanding reimbursement have led to growing adoption of continuous glucose monitoring (CGM). However, successful utilization of CGM technology in routine clinical practice remains relatively low. This may be due in part to the lack of clear and agreed-upon glycemic targets that both diabetes teams and people with diabetes can work toward. Although unified recommendations for use of key CGM metrics have been established in three separate peer-reviewed articles, formal adoption by diabetes professional organizations and guidance in the practical application of these metrics in clinical practice have been lacking. In February 2019, the Advanced Technologies & Treatments for Diabetes (ATTD) Congress convened an international panel of physicians, researchers, and individuals with diabetes who are expert in CGM technologies to address this issue. This article summarizes the ATTD consensus recommendations for relevant aspects of CGM data utilization and reporting among the various diabetes populations

    Consensus recommendations for the use of automated insulin delivery technologies in clinical practice

    Get PDF
    The significant and growing global prevalence of diabetes continues to challenge people with diabetes (PwD), healthcare providers, and payers. While maintaining near-normal glucose levels has been shown to prevent or delay the progression of the long-term complications of diabetes, a significant proportion of PwD are not attaining their glycemic goals. During the past 6 years, we have seen tremendous advances in automated insulin delivery (AID) technologies. Numerous randomized controlled trials and real-world studies have shown that the use of AID systems is safe and effective in helping PwD achieve their long-term glycemic goals while reducing hypoglycemia risk. Thus, AID systems have recently become an integral part of diabetes management. However, recommendations for using AID systems in clinical settings have been lacking. Such guided recommendations are critical for AID success and acceptance. All clinicians working with PwD need to become familiar with the available systems in order to eliminate disparities in diabetes quality of care. This report provides much-needed guidance for clinicians who are interested in utilizing AIDs and presents a comprehensive listing of the evidence payers should consider when determining eligibility criteria for AID insurance coverage

    Biofuels, greenhouse gases and climate change. A review

    Full text link

    Bioactivities of Kernel Extracts of 18 Strains of Maize (Zea mays)

    No full text
    Aqueous and ethanolic extracts of maize kernels from 18 varieties/strains were prepared for the evaluation of inhibitory activities toward alpha-glucosidase and scavenging activities toward nitric oxide (NO center dot) and superoxide (center dot O(2)-). All ethanolic extracts of maize strains tested inhibited yeast (Saccharomyces cerevisiae) alpha-glucosidase with the highest potency (49% to 54%) found for 2 purple and a yellow strains. However, inhibitory effects of maize extracts on rat intestinal alpha-glucosidase were as a whole about 10% as effective as with the yeast enzyme. Maize extracts were capable of scavenging NO center dot at the level of 0.25 mg/mL to extents ranging from 24% to 50% and 26% to 57%, respectively, for aqueous and ethanolic extracts. All tested aqueous extracts were also capable of scavenging center dot O(2)-, with efficacies ranging from 8% to 38%, at the level of 1.5 mg/mL, whereas almost none of the ethanolic extracts scavenged center dot O(2)-, except for one purple strain (approximately 10% effective). The effectiveness in the enzyme inhibition and antioxidant assays did not correlate with total phenolic and/or anthocyanin levels, nor with the nature of pigmentation among the maize strains evaluated. Practical Application: A diversity of pigmented maize strains was evaluated for biological activities related to mitigating oxidative stress and slowing down glucose absorption from the diet. Certain strains tended to be more abundant in these biological activities and have potential to be used in dietary regimes that are designed to promote human health

    Antimicrobial and cytotoxic synergism of biocides and quorum-sensing inhibitors against uropathogenic Escherichia coli.

    Get PDF
    BackgroundUropathogenic Escherichia coli (UPEC) are a primary cause of catheter-associated urinary tract infections (CAUTIs), often forming mature recalcitrant biofilms on the catheter surface. Anti-infective catheter coatings containing single biocides have been developed but display limited antimicrobial activity due to the selection of biocide-resistant bacterial populations. Furthermore, biocides often display cytotoxicity at concentrations required to eradicate biofilms, limiting their antiseptic potential. Quorum-sensing inhibitors (QSIs) provide a novel anti-infective approach to disrupt biofilm formation on the catheter surface and help prevent CAUTIs.AimTo evaluate the combinatorial impact of biocides and QSIs at bacteriostatic, bactericidal and biofilm eradication concentrations in parallel to assessing cytotoxicity in a bladder smooth muscle (BSM) cell line.MethodsCheckerboard assays were performed to determine fractional inhibitory, bactericidal, and biofilm eradication concentrations of test combinations in UPEC and combined cytotoxic effects in BSM cells.FindingsSynergistic antimicrobial activity was observed between polyhexamethylene biguanide, benzalkonium chloride or silver nitrate in combination with either cinnamaldehyde or furanone-C30 against UPEC biofilms. However, furanone-C30 was cytotoxic at concentrations below those required for even bacteriostatic activity. A dose-dependent cytotoxicity profile was observed for cinnamaldehyde when in combination with BAC, PHMB or silver nitrate. Both PHMB and silver nitrate displayed combined bacteriostatic and bactericidal activity below the half-maximum inhibitory concentration (IC50). Triclosan in combination with both QSIs displayed antagonistic activity in both UPEC and BSM cells.ConclusionPHMB and silver in combination with cinnamaldehyde display synergistic antimicrobial activity in UPEC at non-cytotoxic concentrations, suggesting potential as anti-infective catheter-coating agents
    • …
    corecore