521 research outputs found
Multitasking during social interactions in adolescence and early adulthood
Multitasking is part of the everyday lives of both adolescents and adults. We often multitask during social interactions by simultaneously keeping track of other non-social information. Here, we examined how keeping track of non-social information impacts the ability to navigate social interactions in adolescents and adults. Participants aged 11–17 and 22–30 years old were instructed to carry out two tasks, one social and one non-social, within each trial. The social task involved referential communication, requiring participants to use social cues to guide their decisions, which sometimes required taking a different perspective. The non-social task manipulated cognitive load by requiring participants to remember non-social information in the form of one two-digit number (low load) or three two-digit numbers (high load) presented before each social task stimulus. Participants showed performance deficits when under high cognitive load and when the social task involved taking a different perspective, and individual differences in both trait perspective taking and working memory capacity predicted performance. Overall, adolescents were less adept at multitasking than adults when under high cognitive load. These results suggest that multitasking during social interactions incurs performance deficits, and that adolescents are more sensitive than adults to the effects of cognitive load while multitasking
A methodological perspective on learning in the developing brain.
The brain undergoes profound development across childhood and adolescence, including continuous changes in brain morphology, connectivity, and functioning that are, in part, dependent on one's experiences. These neurobiological changes are accompanied by significant changes in children's and adolescents' cognitive learning. By drawing from studies in the domains of reading, reinforcement learning, and learning difficulties, we present a brief overview of methodological approaches and research designs that bridge brain- and behavioral research on learning. We argue that ultimately these methods and designs may help to unravel questions such as why learning interventions work, what learning computations change across development, and how learning difficulties are distinct between individuals.Pathways through Adolescenc
Contextualizing adolescent structural brain development: environmental determinants and mental health outcomes
Pathways through Adolescenc
WUDAPT: Facilitating advanced urban canopy modeling for weather, climate and air quality applications
Environmental issues and impacts to society will be exacerbated with increased population, diminishing resources and the prospects for extreme weather events and climate changes. Current community-based models available for weather, climate and air quaity applications are powerful state-of-science modeling systems, which, with careful considerations, can be employed to address the impact of these issues fo urban areas. Given the complex and high degree of spatial inhomogeneity of the underlying surface area we will review mesh size, appropriate multi-scale science and morphological descriptions and their data requirements including unique city specific gridded morphology and material composition for their forecasting and climate applications.
For this presentation, we discuss, describe and show examples from an ongoing but preliminary prototypic collaborative effort, whose design bases is to provide the experience and recommendations toward extending the scope of the National Urban Database and Access Portal Tools (NUDAPT) to worldwide coverage (WUDAPT). WUDAPT would thus provide requisite gridded data for urban applications of advanced forecast and climate models throughout the world. Strategically, the prototypic efforts will be designed to provide proven protocols for the facilitaton of the data gathering and processing based on available remote sensing and ground-based sampling. Tactically, we employ an iterative approach first obtaining coarse gridded Local Climate Zone (LCZ) classification derived from available Web-based products such as Google-Earth, and Landsat satellite magery. Further sub-class discretization of LCZs and the application of GeoWiki technology facilitates further refinements and ground truthing to yield the desired gridded building morphological distribution parameters and their material composition. Local experts would be encouraged to become involved to ensure factors unique to their area in the world would be incorporated. Finally, given that model applications may require data with different grid resolution we present an outline that employs the new and powerful Multiple Resolution Analyses scheme that can address this need within the scope of WUDAPT
Shock waves in two-dimensional granular flow: effects of rough walls and polydispersity
We have studied the two-dimensional flow of balls in a small angle funnel,
when either the side walls are rough or the balls are polydisperse. As in
earlier work on monodisperse flows in smooth funnels, we observe the formation
of kinematic shock waves/density waves. We find that for rough walls the flows
are more disordered than for smooth walls and that shock waves generally
propagate more slowly. For rough wall funnel flow, we show that the shock
velocity and frequency obey simple scaling laws. These scaling laws are
consistent with those found for smooth wall flow, but here they are cleaner
since there are fewer packing-site effects and we study a wider range of
parameters. For pipe flow (parallel side walls), rough walls support many shock
waves, while smooth walls exhibit fewer or no shock waves. For funnel flows of
balls with varying sizes, we find that flows with weak polydispersity behave
qualitatively similar to monodisperse flows. For strong polydispersity, scaling
breaks down and the shock waves consist of extended areas where the funnel is
blocked completely.Comment: 11 pages, 15 figures; accepted for PR
A longitudinal study of impact and early stance loads during gait following arthroscopic partial meniscectomy
People following arthroscopic partial medial meniscectomy (APM) are at increased risk of developing knee osteoarthritis. High impact loading and peak loading early in the stance phase of gait may play a role in the pathogenesis of knee osteoarthritis. This was a secondary analysis of longitudinal data to investigate loading-related indices at baseline in an APM group (3 months post-surgery) and a healthy control group, and again 2 years later (follow-up). At baseline, 82 participants with medial APM and 38 healthy controls were assessed, with 66 and 23 re-assessed at follow-up, respectively. Outcome measures included: (i) heel strike transient (HST) presence and magnitude, (ii) maximum loading rate, (iii) peak vertical force (Fz) during early stance. At baseline, maximum loading rate was lower in the operated leg (APM) and non-operated leg (non-APM leg) compared to controls (p≤0.03) and peak Fz was lower in the APM leg compared to non-APM leg (p≤0.01). Over 2 years, peak Fz increased in the APM leg compared to the non-APM leg and controls (p≤0.01). Following recent APM, people may adapt their gait to protect the operated knee from excessive loads, as evidenced by a lower maximum loading rate in the APM leg compared to controls, and a reduced peak Fz in the APM leg compared to the non-APM leg. No differences at follow-up may suggest an eventual return to more typical gait. However, the increase in peak Fz in the APM leg may be of concern for long-term joint health given the compromised function of the meniscus
Inter-individual variability in structural brain development from late childhood to young adulthood
A fundamental task in neuroscience is to characterize the brain's developmental course. While replicable group-level models of structural brain development from childhood to adulthood have recently been identified, we have yet to quantify and understand individual differences in structural brain development. The present study examined inter-individual variability and sex differences in changes in brain structure, as assessed by anatomical MRI, across ages 8.0-26.0 years in 269 participants (149 females) with three time points of data (807 scans), drawn from three longitudinal datasets collected in the Netherlands, Norway, and USA. We further investigated the relationship between overall brain size and developmental changes, as well as how females and males differed in change variability across development. There was considerable inter-individual variability in the magnitude of changes observed for all examined brain measures. The majority of individuals demonstrated decreases in total gray matter volume, cortex volume, mean cortical thickness, and white matter surface area in mid-adolescence, with more variability present during the transition into adolescence and the transition into early adulthood. While most individuals demonstrated increases in white matter volume in early adolescence, this shifted to a majority demonstrating stability starting in mid-to-late adolescence. We observed sex differences in these patterns, and also an association between the size of an individual's brain structure and the overall rate of change for the structure. The present study provides new insight as to the amount of individual variance in changes in structural morphometrics from late childhood to early adulthood in order to obtain a more nuanced picture of brain development. The observed individual-and sex-differences in brain changes also highlight the importance of further studying individual variation in developmental patterns in healthy, at-risk, and clinical populations.Pathways through Adolescenc
Mechanisms underpinning longitudinal increases in the knee adduction moment following arthroscopic partial meniscectomy
Background
Knee osteoarthritis is common following arthroscopic partial meniscectomy and a higher external peak knee adduction moment is believed to be a contributor. The peak knee adduction moment has been shown to increase over 2 years (from 3-months post-arthroscopic partial meniscectomy). The aim of this study was to evaluate mechanisms underpinning the increase in peak knee adduction moment over 2 years observed in people 3-months following arthroscopic partial meniscectomy.
Methods
Sixty-six participants with medial arthroscopic partial meniscectomy were assessed at baseline and again 2 years later. Parameters were evaluated at time of peak knee adduction moment as participants walked barefoot at their self-selected normal and fast pace for both time points.
Findings
For normal pace walking, an increase in frontal plane ground reaction force-to-knee lever arm accounted for 30% of the increase in peak knee adduction moment (B = 0.806 [95% CI 0.501–1.110], P < 0.001). For fast pace walking, an increase in the frontal plane ground reaction force magnitude accounted for 21% of the increase in peak knee adduction moment (B = 2.343 [95% CI 1.219–3.468], P < 0.001); with an increase in tibia varus angle accounting for a further 15% (B = 0.310 [95% CI 0.145–0.474], P < 0.001).
Interpretation
Our data suggest that an increase in lever arm and increase in frontal plane ground reaction force magnitude are contributors to the increased knee adduction moment observed over time in people following arthroscopic partial meniscectomy
- …