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REVIEW ARTICLE OPEN

A methodological perspective on learning in the developing
brain
Anna C. K. van Duijvenvoorde 1,2✉, Lucy B. Whitmore 3, Bianca Westhoff 1,2 and Kathryn L. Mills 3,4

The brain undergoes profound development across childhood and adolescence, including continuous changes in brain
morphology, connectivity, and functioning that are, in part, dependent on one’s experiences. These neurobiological changes are
accompanied by significant changes in children’s and adolescents’ cognitive learning. By drawing from studies in the domains of
reading, reinforcement learning, and learning difficulties, we present a brief overview of methodological approaches and research
designs that bridge brain- and behavioral research on learning. We argue that ultimately these methods and designs may help to
unravel questions such as why learning interventions work, what learning computations change across development, and how
learning difficulties are distinct between individuals.
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INTRODUCTION
Childhood and adolescence are considered natural times of
learning and adjustment. In the first decades of life, changes in
physical appearance, as well as cognitive and social-emotional
development, are readily apparent1–4. What is, however, less
readily observed are the profound changes in the structure,
function, and connectivity of the brain. These changes underlie
the development of skills and cognitive processes, for which input
from the environment (i.e., experience) is required to fully
develop.
Learning, defined as the gain of knowledge or skills through

experience, can take on many different forms and can be studied
at multiple levels. For instance, cognitive domains of learning—
such as learning to read, or the ability to learn through feedback—
can be studied together with measures of brain development to
eventually inform our understanding of how children and
adolescents learn in environments such as school and society. In
this review, we discuss three methodological approaches with
clear potential for advancing the study of learning in relation to
the developing brain.
We will start this review with a concise overview of how the

brain is changing over time in structure and function, and the role
of plasticity in learning. We will first highlight the opportunities
afforded by longitudinal intervention designs, which can inform
approaches to understand learning processes during periods of
substantial brain development. We then discuss a computational
modeling approach that examines how people adjust to their
environment based on the processing of positive and negative
outcomes. In computational models, learning processes can be
broken down into several steps—cognitive computations—that
may help to formalize the process of learning and can be linked to
underlying brain development. Finally, we highlight the impor-
tance of recognizing that developmental patterns differ across
individuals when examining learning. As development is not the
same for everyone, subgroups of individuals may share learning
strategies or even struggles in learning. We will discuss
methodological approaches that allow us to study individual

differences in learning, and the degree to which these differences
in learning are reflected in the developing brain.
Taken together, we present a developmental cognitive neu-

roscience perspective on child and adolescent learning by
summarizing different methodological approaches and their
potential combination with brain imaging techniques, such as
magnetic resonance imaging (MRI).

Structural and functional brain development
Methods such as MRI have greatly advanced the study of the
development of the human brain. The first years of life are
characterized by a vast increase in cortical grey matter5, which is
composed of neural and glial cell bodies, dendritic processes and
synapses, as well as blood vessels. This initial overgrowth is
followed by a reduction in cortical grey matter volume between
roughly ages 8–25 years6,7. While the resolution of MRI does not
allow for us to identify specific cellular changes occurring, the
observed reduction in cortical grey matter during childhood and
adolescence is thought to, in part, reflect synaptic pruning, in
which the brain is cutting back and reorganizing synaptic
connections potentially on the basis of how frequently they are
used6,7. This reduction in cortical grey matter is a normative
developmental pattern that can vary across individuals and also
varies across regions of the cortex8,9. Another structural brain
measure, white matter volume, is composed of the myelinated
axons connecting distal regions of the brain and increases until
mid-adolescence or early adulthood before it begins to stabilize6.
This increase in white matter volume reflects, in part, the
strengthening of synaptic connections between brain regions1,10.
In short, these changes in the brain result in a more efficient and
specialized brain system, with stronger connections between
brain regions.
These developmental changes in brain structure are paralleled

by changes in brain function and behavior in the affective,
cognitive, and social domains1,11,12. Brain function is typically
studied in task-based paradigms, examining individuals’ brain
responses to a specific event, such as receiving negative feedback
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or a rewarding outcome. In addition to task-based paradigms, the
intrinsic functional connectivity of the brain has been studied
during scans called ‘resting-state’. In these scans, participants’
spontaneous brain activation is examined while they are lying in
the scanner (but without falling asleep). Resting-state fMRI
analyses are designed to probe functional brain connectivity.
Functional brain connectivity refers to the correlation of activation
signals between different brain regions or networks and is
thought to signal to what extent these regions/networks are
functionally related. Developmental studies have observed
changes in functional connectivity strength, and changes in
network interactions13. For instance, functional connectivity
strength between subcortical and cortical brain regions increased
with age12, and are tied to changes in reward-sensitivity and
learning. Resting-state studies have shown that the brain becomes
increasingly ‘modular’ (i.e., functionally segregated) across child-
hood and adolescence14,15. An increase in modularity is also seen
in structural brain development16, and both these functional and
structural network-level changes are shown to support the
development of, for instance, executive functioning14,16. Resting-
state and task-based studies can thus both provide unique
insights into the development of a specific cognitive function or
experimental manipulation, as well as the broad network-
organization of the brain.
Although not the main focus of this article, when discussing the

developing brain and learning, the importance of plasticity (i.e.,
the brain’s ability to change and adapt as a result of experience) is
evident17. A typical distinction is made between brain plasticity
that is experience-independent, in which brain changes unfolds,
relatively independent of experience; brain plasticity that is
experience-expectant, in which neural sensitivity is attuned to
particular environmental stimuli during specific developmental
windows (i.e., sensitive periods); and brain plasticity that is
experience-dependent, which reflects experiences and environ-
mental inputs that can vary between individuals and supports
learning throughout life18. Neuroplasticity, particularly in sensitive
periods, is related to molecular processes that can inhibit or
stimulate brain plasticity through neurotrophic factors such as
brain-derived neurotrophic factor (BDNF) that may result in
changes in synaptic and neural pruning19.
An example of experience-expectant learning in the brain

comes from the development of basic sensory processing regions.
Seminal research on visual processing has demonstrated that the
development of the visual cortex is dependent on relevant
stimulation from the environment. Specifically, depriving visual
input to one eye resulted in ocular dominance in the visual cortex
of the eye that received input, and an absence of developing
binocular vision20. Moreover, this work highlighted that the
impact of experience on visual cortex development depended
on the environmental input in a specific developmental window,
referred to as a sensitive period. Sensitive periods are periods of
heightened neuroplasticity to specific environmental input. They
have been historically studied for the development of the visual
neural system, yet are thought to occur across multiple cognitive
and social-emotional domains such as language and face
processing17,21. Experience-dependent learning, on the other
hand, can be thought of as learning due to practice, exposure,
or experience. This type of learning therefore depends on
individual’s experiences and can occur at all points of ontogeny.
Experience-dependent learning may contribute to brain develop-
ment by gradually modulating brain connectivity, activation, or
structure. The developmental cognitive neuroscience work we will
discuss here focuses on experience-dependent learning in the
brain across childhood and adolescence.

Learning shapes the developing brain: language
Although brain development may affect the efficiency with which
we can learn about the world, or acquire a new skill, learning can
also have an impact on brain structure and function at a level that
can be measured through MRI, through observed changes in
cortical thickness and changes in functional activation during task
or at rest. Given that learning in cognitive domains often occurs at
the same time as substantial development in both brain structure
and function, it is a challenge to differentiate whether the
observed changes in the brain reflect experience-independent
maturational processes, or experience-dependent learning. In order
to specify the areas of the brain that support learning in cognitive
domains, we must be able to disentangle if an observed effect is
related to the experience and not just reflective of maturational
change that might occur in absence of the experience of learning
a specific skill.
By taking an example of one skill that has to be explicitly taught

in order to be learned, reading, we can begin to unpack these
processes. The left arcuate fasciculus and inferior longitudinal
fasciculus are white matter tracts that are considered crucial for
skilled reading22,23. The left arcuate fasciculus connects anterior
and posterior brain regions (i.e., frontal, parietal, and temporal
lobes). The inferior longitudinal fasciculus connects the occipital
lobe, important for vision, with the temporal lobe, which is—
among others—important for semantics. In general, these two
white matter tracts continue to mature during the same time as
children develop reading skills across childhood and into
adolescence. Longitudinal MRI studies have demonstrated sub-
stantial increases in fractional anisotropy (FA) in these two tracts
from early childhood and into early adolescence24,25. This increase
in FA is thought to reflect increased integrity of the white matter
fibers. This may increase the potential for communication, and
thus signaling between the brain regions connected by these
tracts. Increases in FA within these tracts have been associated
with improvements in reading skill in children26, and the rate to
which the arcuate fasciculus and inferior longitudinal fasciculus
increases in FA across childhood varies by the reading skill of the
child23. However, in a given MRI study, how can we tell if it is the
experience-independent maturational process or the experience
of learning that underlies a change in brain measurement
between two time points?
Longitudinal intervention designs are one possible method to

disentangle maturational and experience-dependent processes in
the brain. Although these designs might incur higher costs and
burden on participants, repeatedly measuring the same individual
over time brings unique opportunities to study ‘true’ development
and the influence of experience. Further, the concurrent acquisi-
tion of behavioral and neuroimaging measures in these designs
allows us to disentangle if change in a brain measure is coupled or
uncoupled with change in the behavioral measure of interest. A
recent study examined white matter integrity four times in
children across the course of an intensive 8-week reading
intervention and compared these children to a group of children
who did not complete the reading intervention27. Participants of
the intervention group were recruited based on parent reports of
reading difficulties and/or a clinical diagnosis of dyslexia, and the
control group was matched for age but not reading level27. By
taking this longitudinal intervention approach, this study could
compare the magnitude of experience-dependent learning (in this
case, through a reading intervention) on white matter integrity to
the magnitude of developmental change. This study identified the
left arcuate fasciculus and inferior longitudinal fasciculus as being
responsive to the experience-dependent learning in the cognitive
domain of reading, as the observed change in integrity of these
white matter paths was coupled to improved reading skill level in
the children who received the intervention27. In contrast, this
study also identified white matter paths that predicted a child’s
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reading skill level, but did not change in white matter integrity
throughout the intervention, such as posterior callosal white-
matter connections27. This finding suggests that some parts of the
brain are already related to readiness to learn certain skills even
during a developmental period marked by changes in brain
structure.
When looking at evidence of learning on brain measures from

another cognitive learning domain—second language acquisition
—the age period when one learns a second language can result in
differential effects on observed brain measures. For example,
cortical thickness measures did not differ between monolinguals
and bilingual individuals who acquired two languages simulta-
neously in early life28. However, bilingual individuals who acquired
their second language later in childhood show differences in
cortical thickness of the inferior frontal gyrus (thicker cortex in the
left IFG, thinner cortex in the right IFG), and the magnitude of
observed differences correlated with the age of second language
acquisition28. Thus, multilingual individuals showed no difference
in overall cortical thickness as long as they acquired their
languages simultaneously, and only individuals who acquired
another language later in life showed a difference in cortical
thickness. Given that cortical thickness seems sensitive to
experiences, such as later language learning, we must consider
what differences in overall measures of cortical thickness could
actually represent. Perhaps these group-level differences in
cortical thickness changes are more likely to reflect the
experience-dependent process of learning, which would be more
in line with later second language acquisition, than learning that is
expected to occur largely early in life. However, to answer this
question, one would need longitudinal designs to compare the
magnitude of change in cortical thickness observed in individuals
who acquired a second language to magnitude of change
observed in individuals of the same age who did not.

Using a computational modeling approach in the study of
learning
One way in which we learn is by processing and integrating the
good and bad outcomes we experience. For instance, through
positive and negative feedback, we may learn to play a new
videogame, learn to play the guitar, or learn the correct spelling of
a difficult word. A computational approach can help us to
understand these behavioral changes and formalize the process of
outcome-based learning in the developing brain.
Computational learning models have been used to investigate

questions such as how children, adolescents, and adults learn
from positive and negative outcomes and integrate information
into subsequent decision-making. An important element of
learning in computational reinforcement learning models focuses
on the difference between an expected outcome and a received
outcome29,30. This difference, a so-called prediction error, forms the
basis of a specific learning signal that indicates how much one
should update expectations of the world, and thereby one’s
subsequent actions. These prediction error computations have
been linked to brain activation, as this learning signal was found
to correlate with dopamine release31,32 that would instigate neural
activation. In the context of understanding learning, reinforce-
ment learning models thus provide a computational link (e.g., a
prediction-error signal) between brain-level processes and the
observed behavior.
Research examining reinforcement learning in children, adoles-

cents, and adults in combination with the developing brain, has
shown that learning signals such as prediction errors are found in
brain regions, including the striatum, medial prefrontal cortex, and
hippocampus. These brain regions are linked to the processing of
reward, value, and memory33. A number of studies have
investigated differences in prediction-error learning in children,
adolescents, and adults to understand sensitivities in learning

across development. Some findings highlight that adolescents are
particularly sensitive to positive prediction errors (feedback that is
better than expected), resulting in higher neural activation in
adolescents compared to children and adults in the striatum34.
Moreover, adolescents outperformed adults in their learning
performance, and the strength of functional connectivity between
the striatum and hippocampus after positive (compared to
negative) outcomes related to subsequent memory performance
for positive events. These findings indicate that the striatum, and
its closely connected regions (see also35), may contribute to
heightened reward-learning in some ages, and a bias towards
learning from positive outcomes36. Note that other studies
suggest that the valence-dependency in children’s and adoles-
cent’s learning is context-specific. For instance, it has been
observed that adolescents may be more prone to learn from
unexpected negative outcomes than adults in other contexts,
such as when reward-structures change quickly37,38.
Computational models may have several advantages for the

study of learning4,39,40. A general advantage is that computational
models allow to simulate behavior. Generating behavioral data
with specific learning parameter settings, allows for better
predictions of (expected) behavioral patterns and helps hypoth-
esis testing as well as theory formation. A specific advantage of
computational models for brain-behavioral studies is that they
allow us to compute latent variables, i.e., variables (such as
prediction errors) that cannot be directly observed in behavioral
data, but that theory assumes is happening in the brain. These
latent variables can be directly linked to brain activation and
compared across groups or ages.
Taken together, combining a computational approach with

measures of brain functioning allows us to examine learning at
different levels of explanation. For instance, on a latent variable
level, we can study whether different age groups weigh positive
and negative outcomes differently or use different goal-directed
strategies in learning41–43. On the other hand, developmental
change may also occur at the brain (i.e., implementation) level. For
instance, learning from experience can involve different brain
regions or networks at different ages. Including these levels of
explanation in the study of learning can help us to identify
mechanisms of learning that may not be apparent, or cannot be
disentangled, from observed behavior only.

Examining heterogeneity in the neurocognition of learning
Another challenge in learning research is to characterize individual
differences in learning. Most of the studies on learning, or
domains of learning, have focused on comparing brain and
behavioral differences between ages or condition. This approach
is useful for detecting mean-level differences. However, there may
be striking heterogeneity in brain development and learning
within groups. How could we target those in the study of learning?
An approach that behavioral studies have taken is to use

clustering techniques that detect subgroups in the data. For
instance, a recent study used such a data-driven approach and has
grouped children based on behavioral measures across a range of
learning domains, including reading, phonological processing, and
executive functioning44. This study showed that within a group of
442 struggling learners, three distinct subgroups were found using
this range of behavioral indicators. The first group showed
symptoms of elevated inattention and hyperactivity/impulsivity.
The second group was characterized by learning problems, and
the third by aggressive behavior and disturbed peer relations.
Moreover, these groups were distinguished by their structural
connectivity of the lateral prefrontal cortex, cingulate cortex, and
the striatum. In particular, aggression and peer problems loaded
on the integration between the prefrontal cortex and the striatum.
These findings support the idea that data-driven profiling can
distinguish common learning problems in children and provide
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insight into the neurobiological mechanisms underlying these
problems.
Another study from the same group used a clustering technique

on white-matter microstructure in a sample of 313 children and
adolescents45. This analysis showed that the group with higher
white matter integrity in the cingulum had profoundly different
cognitive abilities. Applying the cingulate-based grouping to
independent groups of typically-developing children and strug-
gling learners showed that children with lower cingulum FA
showed lower performance across a variety of cognitive
performance measures (e.g., fluid intelligence, working memory,
and vocabulary)45. The value in this approach may particularly
relate to children and adolescents with learning difficulties or
psychopathologies that show complex behavioral phenotypes
that may be better qualified with brain-based than behavioral
subtyping.
A recent study compared sub-grouping profiles generated on

behavioral measures (e.g., literacy, numeracy, working memory)
and structural brain measures (i.e., regional cortical thickness,
gyrification, and sulci depth)46. This approach was used on a
sample of 479 children and adolescents consisting partly of
struggling learners. The results based on behavioral measures
indicated six cognitive profiles ranging from high- to poor
performers on executive function tasks. A similar profile mapping
based on structural brain measures indicated that neural and
cognitive mappings for individuals were not one-to-one. That is,
the same neural profile could be associated with different
cognitive impairments in different children46. In a subsequent
analysis, the authors observed that an individual’s whole-brain
network (i.e., the connectome) of white-matter tracts was more
strongly related to the cognitive profiles of struggling learners.
Particularly, the hub-like structure of individuals’ brain network
related to children’s cognitive abilities. Hubs are well-connected
nodes in a network and are therefore assumed play an important
role in the communication across a network.
Together, these results aid our understanding how the relation-

ship between brain and cognition may be moderated by the
organizational properties of developing brain networks. Conse-
quently, it challenges the idea that a neurodevelopmental
disorder (such as learning difficulty) is only linked to one specific
neuro-anatomical substrate, and instead suggests that learning
difficulties are likely to depend on the interactions and organiza-
tional properties between different brain systems47. These
findings also add to the discussion on the transdiagnostic nature
of cognitive developmental problems, in which developmental
difficulties in learning reflect complex patterns of associations that
are not easily matched to singular diagnostic categories.
Note that these reviewed studies identified subgroups using

brain and behavioral measures. Although this approach allows to
quantify heterogeneity in learning, brain-behavioral relationships
can also be studied at the individual level. For instance, finding
robust individual-differences markers may help to identify
children at risk for developing learning problems. Moreover,
questions of heterogeneity in samples have often been tested on
cross-sectional datasets with wide age-ranges thereby missing a
longitudinal developmental perspective. Finally, these reviewed
studies focus on brain structure and not on brain function.
Functional brain measures may provide a new mapping for
learning profiles, which remains to be explored47.

Where do we go from here?
By drawing from research methods and designs in the domains of
reading, reinforcement learning, and learning difficulties, we have
presented a brief overview of methodological approaches and key
findings in developmental cognitive neuroscience research on
learning. We started with the central question of how maturational
processes can be distinguished from experience-dependent

learning. Longitudinal intervention designs are one possible
method to examine learning potential and to disentangle
maturational and learning-related processes in the brain. Then,
we discussed the use of computational modeling for under-
standing and disentangling the processes that underlie age-
related changes in learning from positive and negative outcomes.
Computational modeling approaches are rising in developmental
studies, and such studies can move this field forward by
quantifying the changes in learning processes over age, and their
relation to changes in the developing brain. Finally, we discussed
handling individual differences using clustering techniques to find
data-driven subgroups that may share a commonality in
behavioral learning difficulty, or neural patterns of connectivity
and/or brain structure. These findings highlight that not all
learning brains are the same, and that methods for detecting
individual differences are applicable using brain- and behavioral
measurements.
Developmental cognitive neuroscience studies have the potential

to advance our understanding of learning by combining innovative
research methods with longitudinal datasets capturing development
from micro (genes, brain) to macro (behavior, environment) levels48.
That is, (more) rich longitudinal studies are needed to understand
learning and learning challenges within individuals, and to address
outstanding questions on how interactions between individual
characteristics, experience, and environmental influences shape
learning across development26,48–51. In the methods discussed in
this review, the longitudinal element is sometimes central (such as in
intervention studies), whereas in other methodological approaches
they have yet to be integrated (such as computational modeling
approaches). Longitudinal brain research may also help towards
better characterization of normative developmental trajectories, and
the consequences for functional and structural brain development
(see for instance an overview of normative structural development
papers52). Eventually, these insights may help in understanding how
for instance psychopathology may be explained as a deviation from
normative development53. Given that longitudinal studies within the
field of developmental cognitive neuroscience are time-consuming,
valuable, and dependent on long-lasting research funding, the large
longitudinal datasets that are becoming increasingly accessible
(e.g.,54–57) will be important for advancing the field and examine the
neurodevelopmental changes of learning.
In this review, we focused predominantly on individual learning.

However, learning obviously does not happen in a vacuum, and
humans learn the vast majority of their knowledge from other
humans or are influenced by the social context of learning.
Learning in a social context is hugely complex and encompasses
interactions between learning and the regulatory demands of a
social context (e.g., distraction by others), motivational processes
(e.g., the desire to interact and engage with others), and our
experience with others (e.g., learned trustworthiness of others). As
such, an individual’s social context can impact the rate of learning,
as well as what is learned in a given situation depending on the
developmental period. For instance, reinforcement learning
models have been used to study how we update our expectations
about others across development and how this is distinct from
non-social learning (e.g.,58–63). Although the social context of
learning warrants a review article of itself, we do want to highlight
that the methods displayed in the current review are also valuable
to apply to research that studies learning in a social context.
Taken together, the study of behavioral learning can benefit

from both structural and functional MRI research. We discussed
methodological approaches that aim to unravel why learning
interventions work, what learning computations change across
development, and how learning difficulties are distinct between
subgroups of individuals. These corresponding findings indicate
that these approaches have the potential to have a lasting impact
on promoting children’s and adolescents’ positive development.
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Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.
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