8 research outputs found

    Search for Lorentz and CPT violation using sidereal time dependence of neutrino flavor transitions over a short baseline

    Get PDF
    A class of extensions of the Standard Model allows Lorentz and CPT violations, which can be identified by the observation of sidereal modulations in the neutrino interaction rate. A search for such modulations was performed using the T2K on-axis near detector. Two complementary methods were used in this study, both of which resulted in no evidence of a signal. Limits on associated Lorentz and CPT-violating terms from the Standard Model extension have been derived by taking into account their correlations in this model for the first time. These results imply such symmetry violations are suppressed by a factor of more than 10 20 at the GeV scale

    Animal population decline and recovery after severe fire : relating ecological and life history traits with expert estimates of population impacts from the Australian 2019-20 megafires

    No full text
    Catastrophic megafires can increase extinction risks; identifying species priorities for management and policy support is critical for preparing and responding to future fires. However, empirical data on population loss and recovery post-fire, especially megafire, are limited and taxonomically biased. These gaps could be bridged if species' morphological, behavioural, ecological and life history traits indicated their fire responses. Using expert elicitation that estimated population changes following the 2019–20 Australian megafires for 142 terrestrial and aquatic animal species (from every vertebrate class, one invertebrate group), we examined whether expert estimates of fire-related mortality, mortality in the year post-fire, and recovery trajectories over 10 years/three generations post-fire, were related to species traits. Expert estimates for fire-related mortality were lower for species that could potentially flee or shelter from fire, and that associated with fire-prone habitats. Post-fire mortality estimates were linked to diet, diet specialisation, home range size, and susceptibility to introduced herbivores that damage or compete for resources. Longer-term population recovery estimates were linked to diet/habitat specialisation, susceptibility to introduced species; species with slower life histories and shorter subadult dispersal distances also had lower recovery estimates. Across animal groups, experts estimated that recovery was poorest for species with pre-fire population decline and more threatened conservation status. Sustained management is likely needed to recover species with habitat and diet specialisations, slower life histories, pre-existing declines and threatened conservation statuses. This study shows that traits could help inform management priorities before and after future megafires, but further empirical data on animal fire response is essential

    T2K ND280 Upgrade - Technical Design Report

    No full text
    In this document, we present the Technical Design Report of the Upgrade of the T2K Near Detector ND280. The goal of this upgrade is to improve the Near Detector performance to measure the neutrino interaction rate and to constrain the neutrino interaction cross-sections so that the uncertainty in the number of predicted events at Super-Kamiokande is reduced to about 4%. This will allow to improve the physics reach of the T2K-II project. This goal is achieved by modifying the upstream part of the detector, adding a new highly granular scintillator detector (Super-FGD), two new TPCs (High-Angle TPC) and six TOF planes. Details about the detector concepts, design and construction methods are presented, as well as a first look at the test-beam data taken in Summer 2018. An update of the physics studies is also presented

    T2K ND280 Upgrade - Technical Design Report

    Get PDF
    In this document, we present the Technical Design Report of the Upgrade of the T2K Near Detector ND280. The goal of this upgrade is to improve the Near Detector performance to measure the neutrino interaction rate and to constrain the neutrino interaction cross-sections so that the uncertainty in the number of predicted events at Super-Kamiokande is reduced to about 4%. This will allow to improve the physics reach of the T2K-II project. This goal is achieved by modifying the upstream part of the detector, adding a new highly granular scintillator detector (Super-FGD), two new TPCs (High-Angle TPC) and six TOF planes. Details about the detector concepts, design and construction methods are presented, as well as a first look at the test-beam data taken in Summer 2018. An update of the physics studies is also presented
    corecore