34 research outputs found

    Trajectory and stability of Lagrangian point L2L_2 in the Sun-Earth system

    Full text link
    This paper describes design of the trajectory and analysis of the stability of collinear point L2L_2 in the Sun-Earth system. The modified restricted three body problem with additional gravitational potential from the belt is used as the model for the Sun-Earth system. The effect of radiation pressure of the Sun and oblate shape of the Earth are considered. The point L2L_2 is asymptotically stable upto a specific value of time tt correspond to each set of values of parameters and initial conditions. The results obtained from this study would be applicable to locate a satellite, a telescope or a space station around the point L2L_2.Comment: Accepted for publication in Astrophysics & Space Scienc

    Linear Stability of Equilibrium Points in the Generalized Photogravitational Chermnykh's Problem

    Full text link
    The equilibrium points and their linear stability has been discussed in the generalized photogravitational Chermnykh's problem. The bigger primary is being considered as a source of radiation and small primary as an oblate spheroid. The effect of radiation pressure has been discussed numerically. The collinear points are linearly unstable and triangular points are stable in the sense of Lyapunov stability provided μ<μRouth=0.0385201\mu< \mu_{Routh}=0.0385201. The effect of gravitational potential from the belt is also examined. The mathematical properties of this system are different from the classical restricted three body problem

    Nonlinear Stability in the Generalised Photogravitational Restricted Three Body Problem with Poynting-Robertson Drag

    Full text link
    The Nonlinear stability of triangular equilibrium points has been discussed in the generalised photogravitational restricted three body problem with Poynting-Robertson drag. The problem is generalised in the sense that smaller primary is supposed to be an oblate spheroid. The bigger primary is considered as radiating. We have performed first and second order normalization of the Hamiltonian of the problem. We have applied KAM theorem to examine the condition of non-linear stability. We have found three critical mass ratios. Finally we conclude that triangular points are stable in the nonlinear sense except three critical mass ratios at which KAM theorem fails.Comment: Including Poynting-Robertson Drag the triangular equilibrium points are stable in the nonlinear sense except three critical mass ratios at which KAM theorem fail

    The Effect of Radiation Pressure on the Equilibrium Points in the Generalised Photogravitational Restricted Three Body Problem

    Full text link
    The existence of equilibrium points and the effect of radiation pressure have been discussed numerically. The problem is generalized by considering bigger primary as a source of radiation and small primary as an oblate spheroid. We have also discussed the Poynting-Robertson(P-R) effect which is caused due to radiation pressure. It is found that the collinear points L1,L2,L3L_1,L_2,L_3 deviate from the axis joining the two primaries, while the triangular points L4,L5L_4,L_5 are not symmetrical due to radiation pressure. We have seen that L1,L2,L3L_1,L_2,L_3 are linearly unstable while L4,L5L_4,L_5 are conditionally stable in the sense of Lyapunov when P-R effect is not considered. We have found that the effect of radiation pressure reduces the linear stability zones while P-R effect induces an instability in the sense of Lyapunov

    Low thrust propulsion in a coplanar circular restricted four body problem

    Get PDF
    This paper formulates a circular restricted four body problem (CRFBP), where the three primaries are set in the stable Lagrangian equilateral triangle configuration and the fourth body is massless. The analysis of this autonomous coplanar CRFBP is undertaken, which identies eight natural equilibria; four of which are close to the smaller body, two stable and two unstable, when considering the primaries to be the Sun and two smaller bodies of the solar system. Following this, the model incorporates `near term' low-thrust propulsion capabilities to generate surfaces of articial equilibrium points close to the smaller primary, both in and out of the plane containing the celestial bodies. A stability analysis of these points is carried out and a stable subset of them is identied. Throughout the analysis the Sun-Jupiter-Asteroid-Spacecraft system is used, for conceivable masses of a hypothetical asteroid set at the libration point L4. It is shown that eight bounded orbits exist, which can be maintained with a constant thrust less than 1:5 10&#x100000;4N for a 1000kg spacecraft. This illustrates that, by exploiting low-thrust technologies, it would be possible to maintain an observation point more than 66% closer to the asteroid than that of a stable natural equilibrium point. The analysis then focusses on a major Jupiter Trojan: the 624-Hektor asteroid. The thrust required to enable close asteroid observation is determined in the simplied CRFBP model. Finally, a numerical simulation of the real Sun-Jupiter-624 Hektor-Spacecraft is undertaken, which tests the validity of the stability analysis of the simplied model

    Alpha-Photon Coincidence Spectroscopy Along Element 115 Decay Chains

    Get PDF
    Produced in the reaction 48Ca+243Am, thirty correlated α-decay chains were observed in an experiment conducted at the GSI Helmholzzentrum für Schwerionenforschung, Darmstadt, Germany. The decay chains are basically consistent with previous findings and are considered to originate from isotopes of element 115 with mass numbers 287, 288, and 289. A set-up aiming specifically for high-resolution charged particle and photon coincidence spectroscopy was placed behind the gas-filled separator TASCA. For the first time, γ rays as well as X-ray candidates were observed in prompt coincidence with the α-decay chains of element 115

    Recoil-α-fission and recoil-α-α-fission events observed in the reaction 48Ca + 243Am

    Get PDF
    Products of the fusion-evaporation reaction 48Ca + 243Am were studied with the TASISpec set-up at the gas-filled separator TASCA at the GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany. Amongst the detected thirty correlated α-decay chains associated with the production of element Z=115, two recoil-α-fission and five recoil-α-α-fission events were observed. The latter five chains are similar to four such events reported from experiments performed at the Dubna gas-filled separator, and three such events reported from an experiment at the Berkeley gas-filled separator. The four chains observed at the Dubna gas-filled separator were assigned to start from the 2n-evaporation channel 289115 due to the fact that these recoil-α-α-fission events were observed only at low excitation energies. Contrary to this interpretation, we suggest that some of these recoil-α-α-fission decay chains, as well as some of the recoil-α-α-fission and recoil-α-fission decay chains reported from Berkeley and in this article, start from the 3n-evaporation channel 288115

    Manifold dynamics and periodic orbits in a multiwell potential

    No full text
    In this article, we explore the dynamics as well as the geometry of the invariant manifolds that determine the escapes from a multiwell potential. We also present the network of both symmetric and asymmetric solutions of the system, while at the same time we extract valuable information about the periodic solutions, such as their locations, multiplicity, and linear stability. © 2022 Elsevier Lt

    On the a and g families of symmetric periodic orbits in the photo-gravitational hill problem and their application to asteroids

    Get PDF
    This paper focuses on the exploration of families of planar symmetric periodic orbits around minor bodies under the effect of solar radiation pressure. For very small asteroids and comets, an extension of the Hill problem with Solar Radiation Pressure (SRP) perturbation is a particularly well-suited dynamical model. The evolution of the a and g families of symmetric periodic orbits has been studied in this model when SRP is increased from the classical problem with no SRP to levels corresponding to current and future planned missions to minor bodies, as well as one extreme case with very large SRP. In addition, the feasibility an applicability of these orbits for the case of asteroids was analysed, and the effect of SRP in their stability is presented
    corecore