1,763 research outputs found

    Damping mechanism for the strongly renormalized cc-axis charge transport in high-TcT_c cuprate superconductors

    Get PDF
    We analyze the cc-axis infrared reflectivity of La1.85_{1.85}Sr0.15_{0.15}CuO4_4 single crystals. The plasma edge near 6 meV, observed below TcT_c, is due to Cooper-pair tunneling. This low value of the plasma edge is consistent with the cc-axis plasma frequency (νp\nu_p) obtained from LDA calculations (>0.1>0.1 eV) if we take into account that the single-particle charge transport along the cc axis is strongly incoherent both above and below TcT_c. We find no evidence for a reduction of the cc-axis scattering rate (γ\gamma) below TcT_c. Our investigation suggests hγ>hνp≫3.5kBTch\gamma>h\nu_{p}\gg 3.5k_BT_c, which is exactly opposite to the clean limit. VSGD.94.6.1Comment: 4 pages, figures on request. Revtex, version 2, Materials Science Center Internal Report Number VSGD.94.6.

    Deleterious variation shapes the genomic landscape of introgression

    Get PDF
    While it is appreciated that population size changes can impact patterns of deleterious variation in natural populations, less attention has been paid to how gene flow affects and is affected by the dynamics of deleterious variation. Here we use population genetic simulations to examine how gene flow impacts deleterious variation under a variety of demographic scenarios, mating systems, dominance coefficients, and recombination rates. Our results show that admixture between populations can temporarily reduce the genetic load of smaller populations and cause increases in the frequency of introgressed ancestry, especially if deleterious mutations are recessive. Additionally, when fitness effects of new mutations are recessive, between-population differences in the sites at which deleterious variants exist creates heterosis in hybrid individuals. Together, these factors lead to an increase in introgressed ancestry, particularly when recombination rates are low. Under certain scenarios, introgressed ancestry can increase from an initial frequency of 5% to 30-75% and fix at many loci, even in the absence of beneficial mutations. Further, deleterious variation and admixture can generate correlations between the frequency of introgressed ancestry and recombination rate or exon density, even in the absence of other types of selection. The direction of these correlations is determined by the specific demography and whether mutations are additive or recessive. Therefore, it is essential that null models of admixture include both demography and deleterious variation before invoking other mechanisms to explain unusual patterns of genetic variation.Bernard Y. Kim, Christian D. Huber, Kirk E. Lohmuelle

    Inhibition of PI-3K restores nuclear p27(Kip1) expression in a mouse model of Kras-driven lung cancer.

    Get PDF
    Reduced expression of the CDK inhibitor p27(Kip1) (p27) in human lung cancer correlates with tumor aggressiveness and poor prognosis. However, the regulation of p27 expression and the role of p27 during lung cancer are poorly understood. Urethane-induced lung tumors in mice frequently harbor mutations in the Kras oncogene, and in this study, we use this model to address the regulation of p27 during tumorigenesis. The Ras effector Akt is known to regulate p27 mRNA abundance by phosphorylating and inactivating the FOXO transcription factors. Phosphorylated Akt and FOXO proteins were both increased in lung tumors, correlating with a reduction in p27 mRNA transcript. Akt also directly phosphorylates p27 and regulates its nuclear/cytoplasmic localization. Tumors showed a reduced nuclear/cytoplasmic ratio of p27 protein, together with an increase in phosphorylated Thr197 p27 in the cytoplasmic pool. Treatment of lung tumor-bearing mice with the phosphoinositol-3 kinase inhibitor LY294002 induced a rapid decrease in phosphorylated Akt and phosphorylated p27, concomitant with an increase in nuclear p27. Germline p27 deficiency accelerated both the growth and malignant progression of urethane-induced lung tumors, and did so in a cell autonomous manner, confirming a causal role of p27 in tumor suppression. These results show that p27 is a potent barrier to the growth and malignant progression of Kras-initiated lung tumors. Further, the reduction of nuclear p27 in tumors is mediated by oncogene signaling pathways, which can be reversed by pharmacological agents.Oncogene advance online publication, 3 August 2009; doi:10.1038/onc.2009.226

    Orientifolds of Matrix theory and Noncommutative Geometry

    Get PDF
    We study explicit solutions for orientifolds of Matrix theory compactified on noncommutative torus. As quotients of torus, cylinder, Klein bottle and M\"obius strip are applicable as orientifolds. We calculate the solutions using Connes, Douglas and Schwarz's projective module solution, and investigate twisted gauge bundle on quotient spaces as well. They are Yang-Mills theory on noncommutative torus with proper boundary conditions which define the geometry of the dual space.Comment: 17 pages, LaTeX, minor corrections, two references added, discussions slightly expanded, to appear in Phys. Rev.

    Asymptotic Expansions for Stationary Distributions of Perturbed Semi-Markov Processes

    Full text link
    New algorithms for computing of asymptotic expansions for stationary distributions of nonlinearly perturbed semi-Markov processes are presented. The algorithms are based on special techniques of sequential phase space reduction, which can be applied to processes with asymptotically coupled and uncoupled finite phase spaces.Comment: 83 page

    Bose-Einstein condensation of excitons in Cu2_2O

    Full text link
    We present a parameter-free model which estimates the density of excitons in Cu2_2O, related to experiments that have tried to create an excitonic Bose-Einstein condensate. Our study demonstrates that the triplet-state excitons move along adiabats and obey classical statistics, while the singlet-state excitons are a possible candidate for forming a Bose-Einstein condensate. Finally we show that the results of this study do not change qualitatively in a two-dimensional exciton gas, which can be realized in a quantum well.Comment: 6 pages, RevTex, 1 ps figur

    Stabilities of nanohydrated thymine radical cations: insights from multiphoton ionization experiments and ab initio calculations

    Get PDF
    Multi-photon ionization experiments have been carried out on thymine-water clusters in the gas phase. Metastable H2O loss from T+(H2O)n was observed at n ≥ 3 only. Ab initio quantum-chemical calculations of a large range of optimized T+(H2O)n conformers have been performed up to n = 4, enabling binding energies of water to be derived. These decrease smoothly with n, consistent with the general trend of increasing metastable H2O loss in the experimental data. The lowest-energy conformers of T+(H2O)3 and T+(H2O)4 feature intermolecular bonding via charge-dipole interactions, in contrast with the purely hydrogen-bonded neutrals. We found no evidence for a closed hydration shell at n = 4, also contrasting with studies of neutral clusters

    Shot Noise in Nanoscale Conductors From First Principles

    Full text link
    We describe a field-theoretic approach to calculate quantum shot noise in nanoscale conductors from first principles. Our starting point is the second-quantization field operator to calculate shot noise in terms of single quasi-particle wavefunctions obtained self-consistently within density functional theory. The approach is valid in both linear and nonlinear response and is particularly suitable in studying shot noise in atomic-scale conductors. As an example we study shot noise in Si atomic wires between metal electrodes. We find that shot noise is strongly nonlinear as a function of bias and it is enhanced for one- and two-Si wires due to the large contribution from the metal electrodes. For longer wires it shows an oscillatory behavior for even and odd number of atoms with opposite trend with respect to the conductance, indicating that current fluctuations persist with increasing wire length.Comment: 4 pages, 4 figure

    Biomechanical Simulation of Electrode Migration for Deep Brain Stimulation

    Get PDF
    International audienceDeep Brain Stimulation is a modern surgical technique for treating patients who suffer from affective or motion disorders such as Parkinson's disease. The efficiency of the procedure relies heavily on the accuracy of the placement of a micro-electrode which sends electrical pulses to a specific part of the brain that controls motion and affective symptoms. However, targeting this small anatomical structure is rendered difficult due to a series of brain shifts that take place during and after the procedure. This paper introduces a biomechanical simulation of the intra and postoperative stages of the procedure in order to determine lead deformation and electrode migration due to brain shift. To achieve this goal, we propose a global approach, which accounts for brain deformation but also for the numerous interactions that take place during the procedure (contacts between the brain and the inner part of the skull and falx cerebri, effect of the cerebro-spinal fluid, and biomechanical interactions between the brain and the electrodes and cannula used during the procedure). Preliminary results show a good correlation between our simulations and various results reported in the literature
    • …
    corecore