173 research outputs found

    Variable Hard-X-Ray Emission from the Candidate Accreting Black Hole in Dwarf Galaxy Henize 2-10

    Get PDF
    We present an analysis of the X-ray spectrum and long-term variability of the nearby dwarf starburst galaxy Henize 2–10. Recent observations suggest that this galaxy hosts an actively accreting black hole (BH) with mass ~106 M⊙{{M}_{\odot }}. The presence of an active galactic nucleus (AGN) in a low-mass starburst galaxy marks a new environment for AGNs, with implications for the processes by which "seed" BHs may form in the early universe. In this paper, we analyze four epochs of X-ray observations of Henize 2–10, to characterize the long-term behavior of its hard nuclear emission. We analyze observations with Chandra from 2001 and XMM-Newton from 2004 and 2011, as well as an earlier, less sensitive observation with ASCA from 1997. Based on a detailed analysis of the source and background, we find that the hard (2–10 keV) flux of the putative AGN has decreased by approximately an order of magnitude between the 2001 Chandra observation and exposures with XMM-Newton in 2004 and 2011. The observed variability confirms that the emission is due to a single source. It is unlikely that the variable flux is due to a supernova or ultraluminous X-ray source, based on the observed long-term behavior of the X-ray and radio emission, while the observed X-ray variability is consistent with the behavior of well-studied AGNs

    BICCO-Net II. Final report to the Biological Impacts of Climate Change Observation Network (BICCO-Net) Steering Group

    Get PDF
    • BICCO-Net Phase II presents the most comprehensive single assessment of climate change impacts on UK biodiversity to date. • The results provide a valuable resource for the CCRA 2018, future LWEC report cards, the National Adaptation Programme and other policy-relevant initiatives linked to climate change impacts on biodiversity

    Identification of new states in 26Si using the29Si(3He,6He)26Si reaction and consequences for the 25Al(p,y)26Si reaction rate in explosive hydrogen burning environments

    Get PDF
    We have studied the [Formula Presented] reaction and have identified new states in [Formula Presented] at [Formula Presented] and [Formula Presented] Based on these measurements and other recent evidence, we suggest spin-parity assignments of [Formula Presented] for the 5.678 MeV state and [Formula Presented] for the 5.945 MeV state, which would account for all the “missing” unnatural parity states in [Formula Presented] in the excitation energy region important to hydrogen burning in novae. New reaction rates are presented for the [Formula Presented] reaction based on this possible assignment of states

    Unexpected Behavior of Heavy-Ion Fusion Cross Sections at Extreme Sub-Barrier Energies

    Get PDF
    The excitation function for fusion evaporation in the system was measured over a range in cross section covering 6 orders of magnitude. The cross section exhibits an abrupt decrease at extreme sub-barrier energies. This behavior, which is also present in a few other systems found in the literature, cannot be reproduced with present models, including those based on a coupled-channels approach. Possible causes are discussed, including a dependence on the intrinsic structure of the participants

    Hybrid HIPIMS and DC magnetron sputtering deposition of TiN coatings: Deposition rate, structure and tribological properties

    Get PDF
    High power impulse magnetron sputtering (HIPIMS) has the advantage of ultra-dense plasma deposition environment although the resultant deposition rate is significantly low. By using a closed field unbalanced magnetron sputtering system, a hybrid process consisting of one HIPIMS powered magnetron and three DC magnetrons has been introduced in the reactive sputtering deposition of a TiN hard coating on a hardened steel substrate, to investigate the effect of HIPIMS incorporation on the deposition rate and on the microstructure and mechanical and tribological properties of the deposited coating. Various characterizations and tests have been applied in the study, including XRD, FEG-SEM, cross-sectional TEM, Knoop hardness, adhesion tests and unlubricated ball-on-disk tribo-tests. The results revealed that, both the DC magnetron and hybrid-sputtered TiN coatings exhibited dense columnar morphology, a single NaCl-type cubic crystalline phase with strong (220) texture, and good adhesion property. The two coatings showed similar dry sliding friction coefficient of 0.8 – 0.9 and comparable wear coefficient in the range of 1 – 2× 10-15 m3N-1m-1. The overall deposition rate of the hybrid sputtering, being 0.047 μm/min as measured in this study, was governed predominantly by the three DC magnetrons whereas the HIPIMS only made a marginal contribution. However, the incorporated HIPIMS has been found to lead to remarkable reduction of the compressive residual stress from -6.0 to -3.5 GPa and a slight increase in the coating hardness from 34.8 to 38.0 GPa

    Production of radioactive ion beams using the in-flight technique

    Get PDF
    Reactions with a heavy projectile incident on a light target can be used for the efficient in-flight production of secondary radioactive beams. An overview of this technique is given using data on 17F beams produced via the p(17O, 17F)n and d(16O, 17F)n reactions. With primary 16,17O beam currents of 100 pnA, intensities of up to 2×106 17F/s on target were achieved. Using this beam, the p(17F, α) 14O reaction was measured

    Branching ratio Γα/Γγ of the 4.033 MeV 3/2+ state in 19Ne

    Get PDF
    The branching ratio Γα/Γγ of the 4.033 MeV 3/2+ state in 19Ne plays a crucial role in the breakout from the hot CNO cycle into the rapid proton capture process. This ratio has been studied by making use of the advantages of inverse kinematics. The state was populated via the 3He(20Ne,α) 19Ne* reaction and its decay via γ or α emission was measured by detecting the heavy reaction products (19Ne or 15O) in coincidence in a magnetic spectrograph. An upper limit Γα/Γγ≤6×10-4 has been obtained. With these results, the astrophysical reaction rate for the 15O (α, γ) 19Ne reaction has been calculated. Its influence on the breakout at various astrophysical sites, novas, x-ray bursts, and supermassive stars, is discussed

    Reaction rate for carbon burning in massive stars

    Get PDF
    Carbon burning is a critical phase for nucleosynthesis in massive stars. The conditions for igniting this burning stage, and the subsequent isotope composition of the resulting ashes, depend strongly on the reaction rate for C12+C12 fusion at very low energies. Results for the cross sections for this reaction are influenced by various backgrounds encountered in measurements at such energies. In this paper, we report on a new measurement of C12+C12 fusion cross sections where these backgrounds have been minimized. It is found that the astrophysical S factor exhibits a maximum around Ecm=3.5-4.0 MeV, which leads to a reduction of the previously predicted astrophysical reaction rate

    Neutron spectroscopic factors in9Li from2H( 8Li, p)9Li

    Get PDF
    We have studied the 2H(8Li, p)9Li reaction to obtain information on the spins, parities, and single-neutron spectroscopic factors for states in 9Li, using a radioactive 8Li beam. The deduced properties of the lowest three states are compared to the predictions of a number of calculations for the structure of 9Li. The results of ab initio quantum Monte Carlo calculations are in good agreement with the observed properties
    • …
    corecore