53 research outputs found

    Red Tides In the Gulf of Mexico: Where, When, and Why?

    Get PDF
    Independent data from the Gulf of Mexico are used to develop and test the hypothesis that the same sequence of physical and ecological events each year allows the toxic dinoflagellate Karenia brevis to become dominant. A phosphorus-rich nutrient supply initiates phytoplankton succession, once deposition events of Saharan iron-rich dust allow Trichodesmium blooms to utilize ubiquitous dissolved nitrogen gas within otherwise nitrogen-poor sea water. They and the co-occurring K. brevis are positioned within the bottom Ekman layers, as a consequence of their similar diel vertical migration patterns on the middle shelf. Upon onshore upwelling of these near-bottom seed populations to CDOM-rich surface waters of coastal regions, light-inhibition of the small red tide of similar to 1 ug chl l(-1) of ichthytoxic K. brevis is alleviated. Thence, dead fish serve as a supplementary nutrient source, yielding large, self-shaded red tides of similar to 10 ug chl l(-1). The source of phosphorus is mainly of fossil origin off west Florida, where past nutrient additions from the eutrophied Lake Okeechobee had minimal impact. In contrast, the P-sources are of mainly anthropogenic origin off Texas, since both the nutrient loadings of Mississippi River and the spatial extent of the downstream red tides have increased over the last 100 years. During the past century and particularly within the last decade, previously cryptic Karenia spp. have caused toxic red tides in similar coastal habitats of other western boundary currents off Japan, China, New Zealand, Australia, and South Africa, downstream of the Gobi, Simpson, Great Western, and Kalahari Deserts, in a global response to both desertification and eutrophication

    Synaptic processes and immune-related pathways implicated in Tourette syndrome.

    Get PDF
    Tourette syndrome (TS) is a neuropsychiatric disorder of complex genetic architecture involving multiple interacting genes. Here, we sought to elucidate the pathways that underlie the neurobiology of the disorder through genome-wide analysis. We analyzed genome-wide genotypic data of 3581 individuals with TS and 7682 ancestry-matched controls and investigated associations of TS with sets of genes that are expressed in particular cell types and operate in specific neuronal and glial functions. We employed a self-contained, set-based association method (SBA) as well as a competitive gene set method (MAGMA) using individual-level genotype data to perform a comprehensive investigation of the biological background of TS. Our SBA analysis identified three significant gene sets after Bonferroni correction, implicating ligand-gated ion channel signaling, lymphocytic, and cell adhesion and transsynaptic signaling processes. MAGMA analysis further supported the involvement of the cell adhesion and trans-synaptic signaling gene set. The lymphocytic gene set was driven by variants in FLT3, raising an intriguing hypothesis for the involvement of a neuroinflammatory element in TS pathogenesis. The indications of involvement of ligand-gated ion channel signaling reinforce the role of GABA in TS, while the association of cell adhesion and trans-synaptic signaling gene set provides additional support for the role of adhesion molecules in neuropsychiatric disorders. This study reinforces previous findings but also provides new insights into the neurobiology of TS

    On the mechanisms governing gas penetration into a tokamak plasma during a massive gas injection

    Get PDF
    A new 1D radial fluid code, IMAGINE, is used to simulate the penetration of gas into a tokamak plasma during a massive gas injection (MGI). The main result is that the gas is in general strongly braked as it reaches the plasma, due to mechanisms related to charge exchange and (to a smaller extent) recombination. As a result, only a fraction of the gas penetrates into the plasma. Also, a shock wave is created in the gas which propagates away from the plasma, braking and compressing the incoming gas. Simulation results are quantitatively consistent, at least in terms of orders of magnitude, with experimental data for a D 2 MGI into a JET Ohmic plasma. Simulations of MGI into the background plasma surrounding a runaway electron beam show that if the background electron density is too high, the gas may not penetrate, suggesting a possible explanation for the recent results of Reux et al in JET (2015 Nucl. Fusion 55 093013)

    Overview of the JET results in support to ITER

    Get PDF

    Observation of Raman forward scattering and electron acceleration in the relativistic regime

    No full text
    International audienceRaman forward scattering (RFS) is observed in the interaction of a high intensity (>1018 W/cm2) short pulse (<1 ps) laser with an underdense plasma (ne~1019 cm -3). Electrons are trapped and accelerated up to 44 MeV by the high-amplitude plasma wave produced by RFS. The laser spectrum is strongly modulated by the interaction, showing sidebands at the plasma frequency. Furthermore, as the quiver velocity of the electrons in the high electric field of the laser beam becomes relativistic, various effects are observed which can be attributed to the variation of electron mass with laser intensit

    Red Tides in the Gulf of Mexico: Where, When, and Why?

    Get PDF
    Independent data from the Gulf of Mexico are used to develop and test the hypothesis that the same sequence of physical and ecological events each year allows the toxic dinoflagellate Karenia brevis to become dominant. A phosphorus‐rich nutrient supply initiates phytoplankton succession, once deposition events of Saharan iron‐rich dust allow Trichodesmium blooms to utilize ubiquitous dissolved nitrogen gas within otherwise nitrogen‐poor sea water. They and the co‐occurring K. brevis are positioned within the bottom Ekman layers, as a consequence of their similar diel vertical migration patterns on the middle shelf. Upon onshore upwelling of these near‐bottom seed populations to CDOM‐rich surface waters of coastal regions, light‐inhibition of the small red tide of ∼1 ug chl l−1 of ichthytoxic K. brevis is alleviated. Thence, dead fish serve as a supplementary nutrient source, yielding large, self‐shaded red tides of ∼10 ug chl l−1.The source of phosphorus is mainly of fossil origin off west Florida, where past nutrient additions from the eutrophied Lake Okeechobee had minimal impact. In contrast, the P‐sources are of mainly anthropogenic origin off Texas, since both the nutrient loadings of Mississippi River and the spatial extent of the downstream red tides have increased over the last 100 years. During the past century and particularly within the last decade, previously cryptic Karenia spp. have caused toxic red tides in similar coastal habitats of other western boundary currents off Japan, China, New Zealand, Australia, and South Africa, downstream of the Gobi, Simpson, Great Western, and Kalahari Deserts, in a global response to both desertification and eutrophication

    Residential greenness and allergic respiratory diseases in children and adolescents – A systematic review and meta-analysis

    No full text
    Background The aetiology of allergic respiratory disease in children is not yet fully understood. Environmental factors are believed to play a major part. The amount of green vegetation surrounding the home (residential greenness) has been recently identified as a potentially important exposure Objectives Our goal was to provide a systematic review and quantitative summary of the evidence regarding the relationship between residential greenness and allergic respiratory diseases in children. Methods Peer-reviewed literature published prior to 1 March 2017 was systematically searched using nine electronic databases. Meta-analyses were conducted if at least three studies published risk estimates for the same outcome and exposure measures. Results We included 11 articles across broad outcomes of asthma and allergic rhinitis. Reported effects were inconsistent with varying measures to define residential greenness. Only limited meta-analysis could be conducted, with the pooled odds ratios for asthma (OR 1.01 95%CI 0.93, 1.09; I2 68.1%) and allergic rhinitis (OR 0.99 95%CI 0.87, 1.12; I2 72.9%) being significantly heterogeneous. Conclusions Inconsistencies between the studies were too large to accurately assess the association between residential greenness and allergic respiratory disease. A standardised global measure of greenness which accounts for seasonal variation at a specific relevant buffer size is needed to create a more cohesive body of evidence and for future examination of the effect of residential greenness on allergic respiratory diseases
    corecore