384 research outputs found

    The Search for Signatures Of Transient Mass Loss in Active Stars

    Get PDF
    The habitability of an exoplanet depends on many factors. One such factor is the impact of stellar eruptive events on nearby exoplanets. Currently this is poorly constrained due to heavy reliance on solar scaling relationships and a lack of experimental evidence. Potential impacts of Coronal Mass Ejections (CMEs), which are a large eruption of magnetic field and plasma from a star, are space weather and atmospheric stripping. A method for observing CMEs as they travel though the stellar atmosphere is the type II radio burst, and the new LOw Frequency ARray (LOFAR) provides a means for detection. We report on 15 hours of observation of YZ Canis Minoris (YZ CMi), a nearby M dwarf flare star, taken in LOFAR's beam-formed observation mode for the purposes of measuring transient frequency-dependent low frequency radio emission. The observations utilized Low-Band Antenna (10-90 MHz) or High-Band Antenna (110-190 MHz) for five three-hour observation periods. In this data set, there were no confirmed type II events in this frequency range. We explore the range of parameter space for type II bursts constrained by our observations Assuming the rate of shocks is a lower limit to the rate at which CMEs occur, no detections in a total of 15 hours of observation places a limit of ÎœtypeII<0.0667\nu_{type II} < 0.0667 shocks/hr ≀ΜCME \leq \nu_{CME} for YZ CMi due to the stochastic nature of the events and limits of observational sensitivity. We propose a methodology to interpret jointly observed flares and CMEs which will provide greater constraints to CMEs and test the applicability of solar scaling relations

    Numerical simulations of unbounded cyclotron-maser emissions

    Get PDF
    Numerical simulations have been conducted to study the spatial growth rate and emission topology of the cyclotron-maser instability responsible for stellar/planetary auroral magnetospheric radio emission and intense non-thermal radio emission in other astrophysical contexts. These simulations were carried out in an unconstrained geometry, so that the conditions existing within the source region of some natural electron cyclotron masers could be more closely modelled. The results have significant bearing on the radiation propagation and coupling characteristics within the source region of such non-thermal radio emissions

    GMRT radio observations of the transiting extrasolar planet HD189733b at 244 and 614 MHz

    Full text link
    We report a sensitive search for meter-wavelength emission at 244 and 614 MHz from HD189733b, the nearest known extrasolar transiting planet of `hot-Jupiter' type. To discriminate any planetary emission from possible stellar or background contributions, we observed the system for 7.7 hours encompassing the planet's eclipse behind the host star. These GMRT observations provide very low (3 sigma) upper limits of 2 mJy at 244 MHz and 160 micro-Jy at 614 MHz. These limits are, respectively, about 40 and 500 times deeper than those reported recently at a nearby frequency of 340 MHz. Possible explanations of our non-detection include: (1) the Earth being outside the planet's emission beam; (2) its highly variable emission with more rapid flaring than the temporal sampling in our observations; (3) the planetary emission being intrinsically too weak; or more likely, (4) the emission being predominantly at lower frequencies because of a weak planetary magnetic field. We briefly discuss these possibilities and the constraints on this exo-planetary system environment.Comment: Accepted for publication in A&A letter

    Surveying the Dynamic Radio Sky with the Long Wavelength Demonstrator Array

    Full text link
    This paper presents a search for radio transients at a frequency of 73.8 MHz (4 m wavelength) using the all-sky imaging capabilities of the Long Wavelength Demonstrator Array (LWDA). The LWDA was a 16-dipole phased array telescope, located on the site of the Very Large Array in New Mexico. The field of view of the individual dipoles was essentially the entire sky, and the number of dipoles was sufficiently small that a simple software correlator could be used to make all-sky images. From 2006 October to 2007 February, we conducted an all-sky transient search program, acquiring a total of 106 hr of data; the time sampling varied, being 5 minutes at the start of the program and improving to 2 minutes by the end of the program. We were able to detect solar flares, and in a special-purpose mode, radio reflections from ionized meteor trails during the 2006 Leonid meteor shower. We detected no transients originating outside of the solar system above a flux density limit of 500 Jy, equivalent to a limit of no more than about 10^{-2} events/yr/deg^2, having a pulse energy density >~ 1.5 x 10^{-20} J/m^2/Hz at 73.8 MHz for pulse widths of about 300 s. This event rate is comparable to that determined from previous all-sky transient searches, but at a lower frequency than most previous all-sky searches. We believe that the LWDA illustrates how an all-sky imaging mode could be a useful operational model for low-frequency instruments such as the Low Frequency Array, the Long Wavelength Array station, the low-frequency component of the Square Kilometre Array, and potentially the Lunar Radio Array.Comment: 20 pages; accepted for publication in A

    Fine structures of radio bursts from flare star AD Leo with FAST observations

    Full text link
    Radio bursts from nearby active M-dwarfs have been frequently reported and extensively studied in solar or planetary paradigms. Whereas, their sub-structures or fine structures remain rarely explored despite their potential significance in diagnosing the plasma and magnetic field properties of the star. Such studies in the past have been limited by the sensitivity of radio telescopes. Here we report the inspiring results from the high time-resolution observations of a known flare star AD Leo with the Five-hundred-meter Aperture Spherical radio Telescope (FAST). We detected many radio bursts in the two days of observations with fine structures in the form of numerous millisecond-scale sub-bursts. Sub-bursts on the first day display stripe-like shapes with nearly uniform frequency drift rates, which are possibly stellar analogs to Jovian S-bursts. Sub-bursts on the second day, however, reveal a different blob-like shape with random occurrence patterns and are akin to solar radio spikes. The new observational results suggest that the intense emission from AD Leo is driven by electron cyclotron maser instability which may be related to stellar flares or interactions with a planetary companion.Comment: 25 pages, 12 figures, accepted for publication in Ap

    Properties of Saturn Kilometric Radiation measured within its source region

    Get PDF
    On 17 October 2008, the Cassini spacecraft crossed the southern sources of Saturn kilometric radiation (SKR), while flying along high-latitude nightside magnetic field lines. In situ measurements allowed us to characterize for the first time the source region of an extra-terrestrial auroral radio emission. Using radio, magnetic field and particle observations, we show that SKR sources are surrounded by a hot tenuous plasma, in a region of upward field-aligned currents. Magnetic field lines supporting radio sources map a continuous, high-latitude and spiral-shaped auroral oval observed on the dawnside, consistent with enhanced auroral activity. Investigating the Cyclotron Maser Instability (CMI) as a mechanism responsible for SKR generation, we find that observed cutoff frequencies are consistent with radio waves amplified perpendicular to the magnetic field by hot (6 to 9 keV) resonant electrons, measured locally

    GMRT search for 150 MHz radio emission from the transiting extrasolar planets HD189733b and HD209458b

    Full text link
    We report a sensitive search for meter-wavelength emission at 150 MHz from two prominent transiting extrasolar planets, HD189733b and HD209458b. To distinguish any planetary emission from possible stellar or background contributions, we monitored these systems just prior to, during, and after the planet's eclipse behind the host star. No emission was detected from HD209458b with a 3-sigma upper limit of 3.6 mJy. For HD189733b we obtain a 3-sigma upper limit of 2.1 mJy and a marginal 2.7-sigma detection of about 1.9+/-0.7 mJy from a direction just 13" from the star's coordinates (i.e., within the beam), but its association with the planet remains unconfirmed. Thus, the present GMRT observations provide unprecedentedly tight upper limits for meter wavelengths emissions from these nearest two transiting type exoplanets. We point out possible explanations of the non-detections and briefly discuss the resulting constraints on these systems.Comment: To be published in Astronomy & Astrophysic

    Direct radio discovery of a cold brown dwarf

    Get PDF
    Magnetospheric processes seen in gas-giants such as aurorae and circularly-polarized cyclotron maser radio emission have been detected from some brown dwarfs. However, previous radio observations targeted known brown dwarfs discovered via their infrared emission. Here we report the discovery of BDR J1750+3809, a circularly polarized radio source detected around 144 MHz with the LOFAR telescope. Follow-up near-infrared photometry and spectroscopy show that BDR J1750+3809 is a cold methane dwarf of spectral type T6.5±16.5\pm 1 at a distance of 65−8+9 pc65^{+9}_{-8}\,{\rm pc}. The quasi-quiescent radio spectral luminosity of BDR J1750+3809 is ≈5×1015 erg s−1 Hz−1\approx 5\times 10^{15}\,{\rm erg}\,{\rm s}^{-1}\,{\rm Hz}^{-1} which is over two orders of magnitude larger than that of the known population of comparable spectral type. This could be due to a preferential geometric alignment or an electrodynamic interaction with a close companion. In addition, as the emission is expected to occur close to the electron gyro-frequency, the magnetic field strength at the emitter site in BDR J1750+3809 is B≳25 GB\gtrsim 25\,{\rm G}, which is comparable to planetary-scale magnetic fields. Our discovery suggests that low-frequency radio surveys can be employed to discover sub-stellar objects that are too cold to be detected in infrared surveys.Comment: Accepted for publication in ApJ
    • 

    corecore