979 research outputs found

    Thermal fluctuation field for current-induced domain wall motion

    Full text link
    Current-induced domain wall motion in magnetic nanowires is affected by thermal fluctuation. In order to account for this effect, the Landau-Lifshitz-Gilbert equation includes a thermal fluctuation field and literature often utilizes the fluctuation-dissipation theorem to characterize statistical properties of the thermal fluctuation field. However, the theorem is not applicable to the system under finite current since it is not in equilibrium. To examine the effect of finite current on the thermal fluctuation, we adopt the influence functional formalism developed by Feynman and Vernon, which is known to be a useful tool to analyze effects of dissipation and thermal fluctuation. For this purpose, we construct a quantum mechanical effective Hamiltonian describing current-induced domain wall motion by generalizing the Caldeira-Leggett description of quantum dissipation. We find that even for the current-induced domain wall motion, the statistical properties of the thermal noise is still described by the fluctuation-dissipation theorem if the current density is sufficiently lower than the intrinsic critical current density and thus the domain wall tilting angle is sufficiently lower than pi/4. The relation between our result and a recent result, which also addresses the thermal fluctuation, is discussed. We also find interesting physical meanings of the Gilbert damping alpha and the nonadiabaticy parameter beta; while alpha characterizes the coupling strength between the magnetization dynamics (the domain wall motion in this paper) and the thermal reservoir (or environment), beta characterizes the coupling strength between the spin current and the thermal reservoir.Comment: 16 page, no figur

    Scalar mesons moving in a finite volume and the role of partial wave mixing

    Get PDF
    Phase shifts and resonance parameters can be obtained from finite-volume lattice spectra for interacting pairs of particles, moving with nonzero total momentum. We present a simple derivation of the method that is subsequently applied to obtain the pi pi and pi K phase shifts in the sectors with total isospin I=0 and I=1/2, respectively. Considering different total momenta, one obtains extra data points for a given volume that allow for a very efficient extraction of the resonance parameters in the infinite-volume limit. Corrections due to the mixing of partial waves are provided. We expect that our results will help to optimize the strategies in lattice simulations, which aim at an accurate determination of the scattering and resonance properties.Comment: 19 pages, 12 figure

    Thermally assisted domain walls quantum tunneling at the high temperature range

    Full text link
    A theoretical and numerical investigations of the quantum tunneling of the domain walls in ferromagnets and weak ferromagnets was performed taking into account the interaction between walls and thermal excitations of a crystal. The numerical method for calculations of the probability of a thermally stimulated quantum depinning as the function of temperature at the wide temperature range has been evolved.Comment: 5 pages, 3 figure

    A Topos Foundation for Theories of Physics: I. Formal Languages for Physics

    Get PDF
    This paper is the first in a series whose goal is to develop a fundamentally new way of constructing theories of physics. The motivation comes from a desire to address certain deep issues that arise when contemplating quantum theories of space and time. Our basic contention is that constructing a theory of physics is equivalent to finding a representation in a topos of a certain formal language that is attached to the system. Classical physics arises when the topos is the category of sets. Other types of theory employ a different topos. In this paper we discuss two different types of language that can be attached to a system, S. The first is a propositional language, PL(S); the second is a higher-order, typed language L(S). Both languages provide deductive systems with an intuitionistic logic. The reason for introducing PL(S) is that, as shown in paper II of the series, it is the easiest way of understanding, and expanding on, the earlier work on topos theory and quantum physics. However, the main thrust of our programme utilises the more powerful language L(S) and its representation in an appropriate topos.Comment: 36 pages, no figure

    Anharmonic vs. relaxational sound damping in glasses: I. Brillouin scattering from densified silica

    Full text link
    This series discusses the origin of sound damping and dispersion in glasses. In particular, we address the relative importance of anharmonicity versus thermally activated relaxation. In this first article, Brillouin-scattering measurements of permanently densified silica glass are presented. It is found that in this case the results are compatible with a model in which damping and dispersion are only produced by the anharmonic coupling of the sound waves with thermally excited modes. The thermal relaxation time and the unrelaxed velocity are estimated.Comment: 9 pages with 7 figures, added reference

    Bohrification of operator algebras and quantum logic

    Get PDF
    Following Birkhoff and von Neumann, quantum logic has traditionally been based on the lattice of closed linear subspaces of some Hilbert space, or, more generally, on the lattice of projections in a von Neumann algebra A. Unfortunately, the logical interpretation of these lattices is impaired by their nondistributivity and by various other problems. We show that a possible resolution of these difficulties, suggested by the ideas of Bohr, emerges if instead of single projections one considers elementary propositions to be families of projections indexed by a partially ordered set C(A) of appropriate commutative subalgebras of A. In fact, to achieve both maximal generality and ease of use within topos theory, we assume that A is a so-called Rickart C*-algebra and that C(A) consists of all unital commutative Rickart C*-subalgebras of A. Such families of projections form a Heyting algebra in a natural way, so that the associated propositional logic is intuitionistic: distributivity is recovered at the expense of the law of the excluded middle. Subsequently, generalizing an earlier computation for n-by-n matrices, we prove that the Heyting algebra thus associated to A arises as a basis for the internal Gelfand spectrum (in the sense of Banaschewski-Mulvey) of the "Bohrification" of A, which is a commutative Rickart C*-algebra in the topos of functors from C(A) to the category of sets. We explain the relationship of this construction to partial Boolean algebras and Bruns-Lakser completions. Finally, we establish a connection between probability measure on the lattice of projections on a Hilbert space H and probability valuations on the internal Gelfand spectrum of A for A = B(H).Comment: 31 page

    Macroscopic Quantum Tunneling of Ferromagnetic Domain Walls

    Full text link
    Quantum tunneling of domain walls out of an impurity potential in a mesoscopic ferromagnetic sample is investigated. Using improved expressions for the domain wall mass and for the pinning potential, we find that the cross-over temperature between thermal activation and quantum tunneling is of a different functional form than found previously. In materials like Ni or YIG, the crossover temperatures are around 5 mK. We also find that the WKB exponent is typically two orders of magnitude larger than current estimates. The sources for these discrepancies are discussed, and precise estimates for the transition from three-dimensional to one-dimensional magnetic behavior of a wire are given. The cross-over temperatures from thermal to quantum transitions and tunneling rates are calculated for various materials and sample sizes.Comment: 10 pages, 2 postscript figures, REVTe

    In-plane dipole coupling anisotropy of a square ferromagnetic Heisenberg monolayer

    Full text link
    In this study we calculate the dipole-coupling-induced quartic in-plane anisotropy of a square ferromagnetic Heisenberg monolayer. This anisotropy increases with an increasing temperature, reaching its maximum value close to the Curie temperature of the system. At T=0 the system is isotropic, besides a small remaining anisotropy due to the zero-point motion of quantum mechanical spins. The reason for the dipole-coupling-induced anisotropy is the disturbance of the square spin lattice due to thermal fluctuations ('order-by-disorder' effect). For usual ferromagnets its strength is small as compared to other anisotropic contributions, and decreases by application of an external magnetic field. The results are obtained from a Heisenberg Hamiltonian by application of a mean field approach for a spin cluster, as well as from a many-body Green's function theory within the Tyablikov-decoupling (RPA).Comment: 6 pages, 2 figures, accepted for publication in RP

    Critical Dynamics of Magnets

    Get PDF
    We review our current understanding of the critical dynamics of magnets above and below the transition temperature with focus on the effects due to the dipole--dipole interaction present in all real magnets. Significant progress in our understanding of real ferromagnets in the vicinity of the critical point has been made in the last decade through improved experimental techniques and theoretical advances in taking into account realistic spin-spin interactions. We start our review with a discussion of the theoretical results for the critical dynamics based on recent renormalization group, mode coupling and spin wave theories. A detailed comparison is made of the theory with experimental results obtained by different measuring techniques, such as neutron scattering, hyperfine interaction, muon--spin--resonance, electron--spin--resonance, and magnetic relaxation, in various materials. Furthermore we discuss the effects of dipolar interaction on the critical dynamics of three--dimensional isotropic antiferromagnets and uniaxial ferromagnets. Special attention is also paid to a discussion of the consequences of dipolar anisotropies on the existence of magnetic order and the spin--wave spectrum in two--dimensional ferromagnets and antiferromagnets. We close our review with a formulation of critical dynamics in terms of nonlinear Langevin equations.Comment: Review article (154 pages, figures included
    corecore