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Abstract

We review our current understanding of the critical dynamics of magnets above
and below the transition temperature with focus on the effects due to the
dipole—dipole interaction present in all real magnets. Significant progress in our
understanding of real ferromagnets in the vicinity of the critical point has been made
in the last decade through improved experimental techniques and theoretical
advances in taking into account realistic spin—spin interactions. We start our review
with a discussion of the theoretical results for the critical dynamics based on
recent renormalization group, mode coupling and spin-wave theories. A detailed
comparison is made of the theory with experimental results obtained by different
measuring techniques, such as neutron scattering, hyperfine interaction, muon spin
resonance, electron spin resonance, and magnetic relaxation, in various materials.
Furthermore we discuss the effects of dipolar interaction on the critical dynamics
of three-dimensional isotropic antiferromagnets and uniaxial ferromagnets. Special
attention is also paid to a discussion of the consequences of dipolar anisotropies on
the existence of magnetic order and the spin-wave spectrum in two-dimensional
ferromagnets and antiferromagnets. We close our review with a formulation of
critical dynamics in terms of nonlinear Langevin equations.
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1. Introduction

Remarkable progress has been achieved in our qualitative and quantitative
understanding of the critical dynamics of magnetic materials. This is partly due to the
advances and new developments in experimental techniques such as neutron scattering,
electron spin resonance and hyperfine interaction probes. Simultaneously, on the
theoretical side, important developments were provided by dynamical scaling theory,
mode-coupling theory and the renormalization group theory. The theoretical progress
has been mainly promoted by including effects of magnetic interactions, such as
dipole—dipole and spin—orbit interaction, on top of the exchange interaction. These
interactions, which are present in all real magnetic materials, were found to change the
critical dynamics quite drastically. Around 1986 the experimental situation was quite
puzzling, showing both quite excellent agreement but also large discrepancies with the
theories existing at that time. Motivated by this seemingly contradictory situation,
renewed theoretical interest on the subject of critical dynamics was promoted.

In this review we shall mostly be interested in the effects of the dipole-dipole
interaction on the critical dynamics of isotropic ferromagnetic materials in three
dimensions. The static properties are reviewed only inasmuch as they are needed for
the dynamics or if they emerge naturally together with the dynamical results. We shall
also discuss other dipolar systems, such as dipolar antiferromagnets and uniaxial
ferromagnets in three dimensions as well as the consequence of dipolar interactions in
two-dimensional (2D) magnets. We do not consider pure dipolar systems such as the
nuclear magnets Cu, Ag and Au. We aim at giving an up-to-date account of the situation
in the field, where we try to give attention to the theoretical as well as the experimental
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progress. In order to make the discussion as self-contained as possible we give brief
discussions of the various theoretical concepts where needed.

Ferromagnets have always played a special role in the field of critical phenomena.
Several simplified models, such as the Ising (1926), Heisenberg (1928) and Hubbard
(1979a,b) models, have been developed in order to understand the fundamental
questions of the statistical behaviour of magnetically ordered systems. The attraction
of these models resides in the simplicity of their form and complexity of behaviour
that they are capable to describe. Over the last two decades, various approaches to study
the above models have been intensively developed, which led to a profound
understanding of the statistical mechanics of magnetic systems on the basis of the above
simplified models. However, one has to keep in mind that for a more realistic description
of magnetic materials it is not sufficient to consider solely the electrostatic interaction
between the electrons in the partly filled shells leading in conjunction with the Pauli
principle to the exchange interaction. There are magnetic interactions, such as the
mutual interaction of the electron spins (dipole—dipole interaction) and the interaction
of the spin and orbital moments of electrons (spin—orbit interaction) which may lead
to magnetocrystalline anisotropies.

The exchange interaction is responsible for the phenomenon of magnetic ordering
itself (at least above two dimensions). The characteristic feature of the exchange forces
is their isotropic and short-range nature. They do not impose any definite orientation
of the magnetic moments with respect to the crystallographic axis. Magnetocrystalline
anisotropies are due to relativistic or magnetic forces (spin—spin dipole, quadrupole,
etc.; spin—orbital; orbital-orbital). Microscopic models of various magnetic interactions
have shown that, in the majority of cases, the spin—orbital interaction is the basic
interaction responsible for the magnetocrystalline anisotropy (for example Morrish
(1965) and Turov (1965)). It relates the directions of the spin magnetic moments of
atoms through their orbital states to the crystallographic axes. Irrespective of the
microscopic nature of the magnetic anisotropy forces, their macroscopic manifestation
in a crystal seems to be determined mainly by the type of symmetry of the lattice.
A special role among the magnetic forces is played by the dipole—dipole interaction
between the magnetic moments of the electrons, because it is of long-range nature and
in cubic crystals leads to an anisotropy with respect to the wave-vector but to leading
order not to the crystallographic axes.

A Hamiltonian which takes into account exchange interaction as well as
dipole—dipole interaction between the magnetic moments of the electrons has first been
given and studied by Holstein and Primakoff (1940). The dipolar interaction is usually
two to three orders of magnitude weaker than the exchange interaction, and it can
therefore (in many cases) be considered to be a small perturbation. However, because
of its long-range nature, the effects of the dipole—dipole interaction become significant
at least very close to the Curie temperature T¢ and for small wave-vectors q, as will
become clear in this review. Note that in particular it leads to the appearance of the
demagnetization factors. Using renormalization group theory it has been shown
(Aharony 1973a,b, Aharony and Fisher 1973, Fisher and Aharony 1973) that the
dipolar interaction is a relevant perturbation with respect to the Heisenberg model.
It was found that the short-range Heisenberg fixed point of the renormalization group
is unstable against perturbations resulting from the dipolar interaction, and the
asymptotic critical behaviour is characterized by a new dipolar critical fixed point.
Furthermore, the long-range nature of the dipolar interaction reflects itself in the Fourier
transform containing a contribution of the singular direction-dependent form ¢%¢*/q>.
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An immediate consequence is the fact that longitudinal fluctuations are reduced in
comparison with the two transverse fluctuations and do not have a divergent
susceptibility any longer at 7c. Here, by longitudinal and transverse we refer to the
direction of the wave-vector q. A consequence of this reduction of the number of
effective order parameter components is a change in the static critical indices.
Hence in a system with dominating exchange interaction there is a crossover from
Heisenberg critical behaviour to dipolar critical behaviour. For instance the effective
temperature-dependent critical exponent of the static susceptibility y approaches the
Heisenberg value, then goes through a minimum until finally it ends up at the dipolar
limiting value.

In general the long-range dipolar interaction is of importance whenever fluctuations
become large. This is the case in the vicinity of critical points and in systems of reduced
dimensionality. In the vicinity of critical points, longitudinal fluctuations are suppressed
and rotational invariance is destroyed. This leads to modified static critical behaviour
and to drastic changes in the dynamics. In systems of reduced dimensionality, which
on the basis of short-range interactions would not have a phase transition at a finite
temperature owing to the large fluctuations destroying the order parameter, the dipole
interaction suppresses these fluctuations and thereby allows a finite order parameter.
With the detection of high-Tc superconductors and their fascinating magnetic
properties, the study of mechanisms which lead to phase transitions in such quasi-2D
systems (interplane interaction, anisotropy, dipolar interaction, etc.) is of prime
importance.

In this paper we review the critical dynamics of magnetic systems. As a reference
and a simpler situation to start with, we treat in section 2 first isotropic ferromagnets
without dipolar interaction. This allows us to introduce the main theoretical concepts
such as dynamic scaling, mode coupling and dynamic renormalization group theory in
a quite elementary and hopefully pedagogical way.

In section 3 we describe the theoretical results on the dynamics of dipolar
ferromagnets with an emphasis on the mode-coupling theory for the paramagnetic
phase. A detailed analysis of the consequences of the dipolar interaction on the
functional form of the dynamic scaling laws, the critical exponents and the line-shape
and linewidth cross-overs will be given. For the ferromagnetic phase we give some
results based on spin wave theory and we also comment on some recent theoretical
approaches, which go beyond the linearized spin-wave theory.

In section 4 the theoretical results are then compared with the findings from a
variety of experimental techniques. They include neutron scattering, electron spin
resonance, magnetic relaxation, hyperfine techniques and muon spin resonance
experiments.

Whereas the main part of the review concentrates on dipolar effects in isotropic
ferromagnets, section 5 concerns dipolar effects in other magnetic systems. These
include three-dimensional (3D) isotropic antiferromagnets, bulk uniaxial ferromagnets
and 2D systemns. In the latter case the dipolar interaction leads to long range order, which
would not be possible for the isotropic Heisenberg model in two dimensions.

Finally, in section 6, we discuss alternative derivations of the mode-coupling theory
via the generalized Langevin equations of Zwanzig and Mori. These methods allow
systematic derivation of the mode-coupling theory in the framework of a diagrammatic
analysis. Also, some systematic improvements are possible. We conclude with a
summary and an outlook in section 7. Some technical details and important conceptual
background material is collected in the appendices.
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2. Isotropic ferromagnets
Our main concern in this review is the immediate vicinity of the critical point and
the influence of the dipolar interaction on the critical dynamics. As a reference and a
simpler situation to start with we treat first isotropic ferromagnets without dipolar
interaction. This allows us to introduce the basic concepts and results of the different
theoretical approaches and compare them with the experimental situation.

2.1. Dynamical scaling and hydrodynamics

In systems where a continuous symmetry is broken, hydrodynamics together with
dynamical scaling allows one to obtain definite conclusions about the dynamic critical
behaviour.

To start with, we remind the reader of the structure of the hydrodynamic modes in
isotropic ferromagnets. In an isotropic ferromagnet, magnetization is conserved,
giving rise to three hydrodynamic equations for the magnetization vector M(x). In the
paramagnetic phase, that is for temperatures above the Curie Temperature Tc and in
zero magnetic field H (7> T¢; H = 0) the magnetization obeys a diffusion equation

oM

—=DV’M, 2.1
o 2.1)

with a diffusion constant D. Hence the long-wavelength excitations are diffusive
w(g) =iDg’. 2.2)

In the ferromagnetic phase the magnetization M is finite and the spin fluctuations
which are perpendicular to the mean magnetization obey spin-wave equations of
motion. The spin-wave frequency is according to hydrodynamics given by

iw —ig*A. (2.3)
x @)
Here x'(q) is the transverse susceptibility, M the magnetization and A a damping
constant. The real part of the frequency is related to static critical quantities. For the
imaginary part, the damping, hydrodynamics predict a decay rate proportional to the
fourth power of the wavenumbert.
Dynamical scaling states that the critical frequency is of the homogeneous form

w(g, &) = q"Qq?), 24

where z is the dynamic critical exponent and & « |T — T¢| ™" the correlation length with
the static critical exponent v. Using the scaling behaviour of the static quantities
(see for example the excellent book by Ma (1976)) in the hydrodynamic region
(M~ &PV and x%(g) ~ g~ *¢ ~") and the scaling relations between the static exponents
(y=v(2—1); 26=(d—2+n)v), one finds for the spin-wave frequency in the
hydrodynamic region

w(q) =

Re {CO(q, f)} — OCq2€(2_d+'7)/2 — q(d+2—n)/2(qé)(2—d+ r,)/2. (25)

2@
Here d is the spatial dimension of the system. One thus finds as a result of the dynamic

+Indeed the microscopic theory of the Heisenberg model predicts a spin-wave decay rate
of the form ¢* [c2(1In )2 + ¢11ng + ¢o) (Dyson 1965a, b, Kashcheev and Kvivoglaz 1961, Vaks
et al. 1967a,b, Harris 1968).
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Figure 2.1. The macroscopic domain of wave-vector g and correlation length &. In the three
shaded regions the correlation functions have different characteristic behaviours:
hydrodynamic regions, g <€ 1, T> T¢ and T < Tg; critical region, g€ > 1, T= Tc. There
is a change-over from underdamped spin waves to spin diffusion when the temperature
is raised from below T¢ to above T¢, as schematically indicated in the diagram.

scaling law, equation (2.4) and the hydrodynamic behaviour of the static quantities an
exact relation for the dynamic exponent:

d+2—n
=—".

> (2.6)

Using again equations (2.5) and (2.6) the damping coefficient A of the spin waves and
the spin diffusion coefficient D in the paramagnetic phase are

A~ E6=drm2 . E@-dtne, 2.7

The spin diffusion coefficient D goes to zero at the critical temperature, a phenomenon
known as critical slowing down. Thus hydrodynamics and dynamical scaling allow one
to determine the main critical dependences of the transport coefficients. The picture
emerging from equations (2.2)—(2.7) is summarized in figure 2.1.

The critical frequency is a function of the wavenumber and the inverse correlation
length. The hydrodynamic region is given by g<<¢~!, and the non-hydrodynamic
critical region by ¢ > &~ . Of course the critical region is limited to g <<a~ ' and & > a,
where a is a microscopic length scale (e.g. the lattice spacing).

We close this section by giving the hydrodynamic equations of the low-temperature
phase (Schwabl and Michel 1970, Hohenberg and Halperin 1977):

d M

— M* = y Argx
dth 7@ My — Aq"My,
d

- Y — X _ dagy
aMa xT(q) My — Ag"My,

d
aMf,: — I'(g)Mg,

the excitations of which were the basis of our discussion. Here we assumed that the
magnetization is oriented along the z direction. In addition to the transverse equation
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the magnetization component along the order parameter obeys a diffusion equation in
three dimensions: I'(q) = Dug*

2.2. Mode-coupling theory

Some of the most successful theoretical approaches in critical dynamics are
mode-coupling theories. The first such theory was proposed by Fixman (1960, 1962)
and then placed on a more rigorous basis by Kandanoff and Swift (1968), and especially
Kawasaki (1967, 1970, 1976). In this section we exemplify the mode-coupling theory
for the critical dynamics of an isotropic ferromagnet, where the spins are coupled only
by short-range isotropic exchange interaction. The Hamiltonian for such a spin system
is given by

H= f J(@)Sq*S-—q (2.8)
q

Here we have introduced the notation [ = v,fd*q/(2n)?, where v, is the volume of the
primitive cell of the Bravais lattice. Upon introducing the cube edge length a of
the corresponding cubic cell, the dimensionless quantity b = (a*/v,)'"” characterizes the
lattice structure. The Fourier transforms of the Cartesian components S’(x) of the spin
operator are defined by

Sy= f dxexp (ig- x) $(x), (2.9)

and J(q) = — Jo + Jq’a® characterizes the exchange interaction. We are retaining only
terms up to second order in the wave-vector q and have supposed that the exchange
interaction extends up to the second-nearest neighbours. For b.c.c. and f.c.c. lattices we
have J = J, + J», where J; and J, are the values of the exchange parameters between
the nearest and between the next-nearest neighbours respectively. For a s.c. crystal the
relation is J = J; + 4J,. The parameter Jo does not enter the equations of motion. It is
convenient to introduce the ladder operators

Sy =Sy xiSh (2.10)

and S instead of the Cartesian components of the spin operator. Then, using the
commutation relation for spin operators, one finds for the Hamiltonian (2.8) the
following set of equations of motion (we take A = 1):

d
4 Sa= i f [J(K) — J(q — WIS 4 4Sk @.11)
k
d% Si==+2i f [J(K) — J(q — K)ISZ_ Sk (2.12)
k

The equations of motion (2.11) and (2.12) exhibit explicitly the vanishing of dS f,/dt at
q =0, that is the order parameter itself is a constant of motion. Starting from these
microscopic equations of motion there are a variety of different schemes for deriving
the mode-coupling equations for the spin correlation functions (Bennett and Martin
1965, Kawasaki 1967, Résibois and De Leener 1967, 1969, Wegner 1968, Hubbard
1971a,b).

The quantity of interest is the Kubo relaxation matrix for a set of dynamical variables
denoted {X*(x)}, which is defined by
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o0

o¥(q,n =1 lim (j drexp (— e7){[X*(q, ), X"(q, O)T]>>, (2.13)

t
where (... } denotes the thermal average. The dynamical variables are normalized such
that

X%, XP: = o*4(q,t = 0) = 6, (2.14)

that is we use normalized spin variables X3(?) = S§(0)/[x"(q)]"*, where x*(q) are the
static susceptibilities.

One of the most concise ways of deducing mode-coupling equations utilizes the
projection operator technique, originally introduced by Mori (1965) and Zwanzig
(1961). The main idea is that one can separate the set of dynamical variables into two
classes: one slowly and one rapidly varying class. With the aid of this projection
operator method the fast variables are eliminated and one can derive generalized
Langevin equations for the dynamic variables or equivalently for the correlation
functions (Kawasaki 1973, Mori and Fujisaka 1973, Mori et al. 1974) (see also section
6 and appendix 2). The corresponding equation for the Kubo relaxation function is

&“Z(ty_) =i (q)P"P(q, 1) — Jot dt I'™(q,t — 1)9"%(q, 1), (2.15)
and for its half-sided Fourier transform
d*H(q, w) = f: dr #*#(q, ©) exp (iw?), (2.16)
one obtains
&(q, w) = i[wl + o(q) +il(q, )] " (2.17)

The frequency matrix w*(q) is given by
i0"(q) = (X5, X = — X5, XL D), (2.18)

where we have used the Kubo (1957) identity (A, B) = i{[A, B']). The nonlinear aspects
of the spin dynamics are contained in the matrix I of the transport coefficients (memory
matrix). As a result of the projection operator technique these can be written in terms
of the Kubo relaxation matrix (Kawasaki 1970, 1976)

I*¥(q, ) = (3X (1), 53X () (2.19)
of the non-conserved parts of the currentst
8X% = X% —iw*(q)X5. (2.20)

The simplest approximation which can be made at this stage is to consider only
two-mode decay processes, which in technical terms amounts to a factorization of the
Kubo formulae (2.19) after insertion of the equations of motions. Frequently one makes
additionally an approximation for the line shape (i.e. frequency dependence) of the
relaxation matrix, for example a Lorentzian approximation. In principle, however, one
can solve directly the set of self-consistent equations for the shape functions resulting

+ Here we have chosen a linear projection operator X = (X, X*)X*. Then the random forces
can be written in terms of the projection operator as SXq =expli(l — AL — P) Xq, where
% is the Liouville operator. Neglecting the projection operator in the time development, one
obtains equation (2.20); see also appendix 2.
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from the decoupling approximation only. For the isotropic ferromagnet this was first
achieved by Wegner (1968) and Hubbard (1971a) in the paramagnetic phase. For most
practical purposes an excellent approximation for the linewidth can be obtained from
the mode-coupling equations simplified by the Lorentzian approximation.

2.2.1. Paramagnetic phase

In the paramagnetic phase the order parameter is zero, (Sq)|q=0 = 0, implying that
the frequency matrix »*¥ vanishes. Upon using the above decoupling procedure, one
obtains the following set of coupled integrodifferential equations for the Kubo
relaxation function:

w("’ ) f dz I'(q,t— D)(g, ), @21)
and the transport coefficients
®(q, 1) = 4kaT f otk @ KA 54 o — k), (2.22)
k x(a)
with the vertex function (= 1)
2
v(k, q) = [J(k) — J(q — WI* = [2qu g (%}‘—%)] : (2.23)

Essentially the same equations have been derived by numerous workers (Bennett and
Martin 1965, Kawasaki 1967, 1976, Résibois and De Leener 1967, 1969, Wegner 1968,
Hubbard 1971a, b) using different approaches. The temperature dependence enters the
equations only implicitly via the correlation length

T— Tc>v

¢=2% ( (2.24)

The equations for the Kubo relaxation function must in general be solved numerically.
However, in the critical region, one can deduce certain important properties of the

solution analytically. Upon inserting the static scaling law (Wilson and Kogut 1974)

“2HI9(x), (2.25)

xq, &)= a9

with the scaling variable x = 1/g&, one can show by inspection that the solution of
equations (2.21) and (2.22) fulfils dynamic scaling

®(q, &, ) = (Ag) ™ ' (x, v), (2.26)
I'(g, &, )= Aqyx,v), (2.27)
with the scaling variable v = w/Aqg* and the non-universal constant

a*? (ZJk aTc >"2

2.28
b 4t ( )

where b is a dimensionless parameter which depends on the crystal structure (table 1).
Note that in equations (2.25)—(2.27) we have explicitly incorporated the correlation
length ¢ into the list of arguments of the correlation functions in order to indicate the
reduction in arguments accomplished by the dynamic scaling form. In order to simplify
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Table 1. Crystal structure dependent parameters of cubic Bravais lattices. ¢ is the number of
next-nearest neighbours to a given lattice site. The parameter b is defined as b = (a*/v,)'"
and characterizes the lattice structure. 6 is the distance between nearest-neighbour ions
and v, the volume of the Bravais lattice primitive cell. a is the cube edge.

0 U,

Lattice c b (units of a) (units of a®)
S.c. 6 1 1 1
B.c.c. 8 212 31272 1
Fc.c. 12 2 21213 1

notation this temperature dependence is in most of the remaining text not written out
explicitly.

The above mode-coupling equations give a dynamic critical exponent z = (5 + 1)/2
instead of the correct expression z = (5 — #)/2 (Halperin and Hohenberg 1967, 1969,
Ma and Mazenko 1975, Bausch et al. 1976, Janssen 1976). This inconsistency of the
conventional derivation of the mode-coupling equations is fortunately not a very serious
problem since # is very small in the case of 3D ferromagnets: # =~ 0-05 (Mezei 1984).
In order to be consistent, one has to take for the scaling functions on Ornstein—Zernike
form

|

neglecting the exponent #. In section 6 we shall give a derivation of modified
mode-coupling equations based on a path integral formulation of the stochastic
equations of motion. There we shall show how the above inconsistency can be resolved
by taking into account certain kinds of vertex correction which are neglected in the
conventional derivation of mode-coupling equations.

The scaling relations (2.26) and (2.27) for the Fourier-transformed quantities imply
for their time-dependent counterparts

D(g, 5.0 = P(x,7), (2.30)
I'(g, ¢, = (AgYy(x,7), (2.31)
with the scaled time variable
7= Ag%t. 2.32)
The mode-coupling equations for the corresponding scaling functions are
6(]5%1_)= —L dt'y(x,7 — t)P(x, ") (2.33)

and

X/ p)Rxlp - ) & ({

21 o’ "’z> ¢ (pi “’Z—)' (2:34)

+1 o

y(x, T) =21° f dn f dp p* (p, 1)
-1 1]

The scaled vertex function reads

8(p, ) = 2(pn — 4Y%, (2.35)
where we have defined p =k/q, p— = |k — q|/q and 5 = cos (k, q).
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Before turning to the numerical solution of the mode-coupling equations, let us
quote some results which can be obtained analytically. For temperatures not to close
to Tc one can infer from equations (2.22) and (2.23) that in the limit ¢g—0
(hydrodynamic limit) the vertex factor v(k, q) and hence the memory kernel I'(g, )
becomes small. Hence one could argue that the relaxation function @(g, f) varies very
slowly and the solution of equation (2.21) becomes an exponential (Hubbard 1971a)

&(q, 1) = exp(— Dg’0), (2.36)
where the diffusion constant is given by
1 (” 1
D= lim <—2 j I'(g,?®) dt) = lim (—2 I'g, o= 0)). .37)
g0 \g" Jy qg—0 q

A scaling analysis of the right-hand side gives for the temperature dependence of the
diffusion coefficient D ~ &~ ' in agreement with the scaling result by Halperin and
Hohenberg (1967, 1969).

The above argument leading to the spin diffusion behaviour has been questioned
by Ménson (1974). Starting from a relaxation function which is of spin diffusion type
(see equation (2.36)), Méanson (1974) showed that the memory kernel becomes of the
form

2
Dqt ) (2.38)

I'(q, t)OCt‘S'Zexp< -

for asymptotic times and small g. From this, Méinson (1974) concludes that the spin
diffusion type of behaviour cannot be the correct form of the relaxation function as
asymptotic times, which would raise some questions on the validity of the
mode-coupling theory (since it invalidates the results obtained from a hydrodynamic
theory based on the conservation of the magnetization). The above argument leading
to an exponentially decaying relaxation function becomes invalid also close to Tc
because the static susceptibilities in the expression for the memory matrix diverge and
therefore the relaxation function no longer varies slowly. A shape crossover from a
Lorentzian to a different critical shape takes place by approaching the critical
temperature (Hubbard 1971a). Nevertheless, a Lorentzian approximation for the line
shape still gives reasonable an approximation for the linewidth, since the latter is not
so sensitive to the precise form of the line shape.

In the Lorentzian approximation the mode-coupling equations reduce to a single
integral equation for the linewidth I'.o(q) = A YLor(X):

Ll R RSP AP A )
PLor(X) 200 ), dn J; dp p_8(p, ) o (xlp) + p P pedilp )

Therefrom one can deduce the asymptotic behaviour of the typical linewidth
analytically:

(2.39)

<
FrorX) ~ {i’m’ for {i: i (2.40)
implying that I'(g) ~ ¢** right at T= Tc and I'(g) ~ ¢°¢ ~'? in the hydrodynamic limit
g& <1, that is the temperature dependence of the diffusion constant is given by
D~ &2 (Kawasaki 1967) as we have already deduced from scaling arguments.
The full scaling function resulting from equation (2.39) is shown in figure 2.2 It is
usually called the Résibois—Piette (1970) scaling function since Résibois and Piette did



588 E. Frey and F. Schwabl

20

1x)

0.0 . . .
0.0 5.0 10.0 15.0 20.0

1/9&

Figure 2.2. The Résibois—Piette (1970) scaling function against x = 1/¢¢, resulting from the
numerical solution of the mode-coupling equations in the Lorentzian approximation for
a Heisenberg ferromagnet in the paramagnetic phase.
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Figure 2.3. The universal function ¢(w/og>?, 1/g¢) for several values of 1/g¢: (a) 1/g¢ = 0; (b)
1/g& =0-2; (¢) 1/g& = 1-04. (From Hubbard (1971a) where the scale ¢ is defined.)

the first numerical solution of the mode-coupling equations in the Lorentzian
approximation.

In order to find the complete behaviour of the relaxation function ®(g, #), one has
to solve equations (2.33) and (2.34) numerically. This was done by Wegner (1968) at
Tc and extended to temperatures above T¢ by Hubbard (19714, b). The results are shown
in figure 2.3. Itis found that for small wave-vectors (not too close to the zone boundary)
there is a shape crossover from a Lorentzian (see equation (2.36)) to a more
Gaussian-like shape by approaching the critical temperature. The critical shape at T¢
is essentially the same as obtained from renormalization group (RG) theory
(de Dominicis 1976, Bhattacharjee and Ferrell 1981) (see also section 2.3.1).

Recently, this shape crossover has been re-examined by Aberger and Folk (1988)
and Frey et al. (1989) in detail with emphasis on constant-energy scans. Their results,
shown in figures 2.4 (a) and (b) for the scaling function of the spin relaxation function
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Figure 2.4. (a) The spin relaxation ¢(Ag>?t, 1/g¢) for several values of 1/¢g¢ indicated in the
graph. (b) The scaling function 2Re[d(w/Ag>?, 1/g£)] for the spin relaxation function
D(q, 0) = P(wl Ag>?, 11qgE)I Ag*™ for several values of 1/¢¢ indicated in the graph, showing
the shape crossover to a Lorentzian shape for 1/gé = 1.

against time and frequency respectively confirm the shape crossover from a Lorentzian
to a critical shape first found by Hubbard (1971a, b). In addition, strongly overdamped
oscillations in the time-dependent spin relaxation function at T¢ are found. These
oscillations, however, do not lead to an observable structure in the Fourier transform
apart from a flatter decrease at small frequencies. With increasing temperature these
oscillations almost disappear. At present, it is not clear whether these oscillations are
an artefact of the mode-coupling approximation and go away when higher-order terms
are included. A RG analysis does not show these oscillations (de Dominicis 1976,
Bhattacharjee and Ferrell 1981, Iro 1987).

Hubbard (1971a) also discusses the shape function for cubic ferromagnets with
nearest-neighbour interaction for wave-vectors close to the Brillouin zone boundary:
J(q) = J[cos (g-a) + cos (gya) + cos (q.a)]. He finds that there is a tendency of the shapes
to become squarer than a Lorentzian and, as the wave-vectors come close to the zone
boundary one observes the formation of small shoulders. Recently Cuccoli et al. (1989)
have studied the shape of the correlation function at the zone boundary for EuO and
EuS with a f.c.c. lattice taking into account nearest- and next-nearest-neighbour
exchange interactions. The numerical solutions of the mode-coupling equations give,
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as in the s.c. case with nearest-neighbour interaction considered by Hubbard (1971a),
inelastic shoulders at the zone boundary, but less intense than seen in the experiment
(Bohn ez al. 1984, Boni et al. 1987a).

2.2.2. Ferromagnetic phase

In this section we review the mode-coupling equations for isotropic ferromagnets
below the Curie point (Schwabl 1971, Frey and Schwabl 1988a, 1989a). On the
assumption that the spontaneous magnetization points are along the z axis the frequency
matrix is given by

0 0 0
o p=wi@|0 -1 0, (2.41)
0 0 +1
where a, =z, +, —. The frequency of the transverse modes is
(@) =——, (2.42)
U@

where M =(S%_,) denotes the magnetization and yx'(q) the static transverse
susceptibility. Owing to the rotational symmetry of the Hamiltonian the Kubo relaxation
matrix (g, w) is diagonal:

i

P(gq, w) = @il g )’ (2.43)
D* (g, 0)=—= 2i. s . (2.44)
o+ wlg)+il~"(q,w)
The mode-coupling approximation for the transport coefficients
I'¥(gq,1) = gq—%%(‘;i‘ﬂ =TI(q,1), (2.45)
_ 830 £ ia(g)S5 (1), $4(0) * inx(g)S5(0))

1—'1 1(q,t)

=A%(q, D, (2.46)
2" (@) 7
where x™(g) is the longitudinal susceptibility, results in the following set of integral
equations (Schwabl 1971):

x'(q— k) (k)
paC))
x"(q — k) (k) Pt
x'(@

Here we have used the notation [, = fdv/2n. Equations (2.43) and (2.44) together with
equations (2.47) and (2.48) constitute a complete set of self-consistent integral
equations for the Kubo relaxation functions $**(g, @), which in principle could be
solved numerically. For M = 0 and x* = x", equations (2.47) and (2.48) reduce to the
mode-coupling equations for the paramagnetic phase, equation (2.22).

The above mode-coupling equations have been analysed in the Lorentzian
approximation for the relaxation functions

I(q, ) = ksT f f o(k, q) P Hq—k o—v® "(kv), (247)
v7k

AT (q,w) = 2kBTf f v(k, q) (g—k, o — Pk, v). (2.48)
v vk
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] I .. _ 2%
Y@= Tirg T @) ore it (2.49)

with
I =TI(gw=0), Alg@=A"(q)=A"(9)*=A4"(g,w(g)). (2.50)

The frequency integrals can now be carried out readily and one finds the following set
of coupled integral equations for the linewidths:

diksT (a = ")
@7 f "D 500 — i@ — W+ id@ — W + A7)’ @31
_ diksT f 1@~ K k)
: 2.52
@ v w(q) —o(q— k) +iA(q — k) +il'(k) (2.52)

As is easily seen, I'(g) is real, but A(g) in general is complex. The imaginary part of
the transverse damping function A(g) leads to a shift in the frequency of the transverse
spin waves which, however, is a negligible correction in comparison with the frequency
matrix (2.41), as will be seen later.

In the hydrodynamic regime, equations (2.51) and (2.52) can be solved analytically
with the result

1
x gt —
I'(g)x ( ) A(g)* g [6‘1 In <q€> + CO], (2.53)

where ¢g and c; are constantst. With the well known scaling properties of the static
susceptibilities (neglecting the Fisher exponent #) given by

- T(x), 2.54)

1
XL’T(q)‘ZJ 5= 4

equation (2.41) gives
w(g) = Ag‘d(x), (2.55)

where the dynamical critical exponent z =3 as in the paramagnetic phase.
The scaling function for the bare frequency of the transverse modes following from
equation (2.42) can be written as

. fx'2, T=T,
OO) ~ { o, rir=q. (2.56)

Analysing the scaling properties of the mode-coupling equations and combining this
with the static and dynamic scaling law, it was shown (Schinz 1994a, Schinz and
Schwabl 1994) that the amplitude f for the scaling function of the spin-wave frequency
is a universal quantity and determined by other universal amplitude ratios:

() @y @ E @

Here ¢ is an arbitrary normalization constant for the scaling functions. If one chooses

+ The low-temperature spin-wave theory of Dyson (1965a,b) gives in addition a term
q*[In (1/¢&))? (Kascheev and Krivoglaz 1961, Vaks et al. 1967a,b, Harris 1968). This will
probably come out from a mode-coupling theory where decays of the transverse mode into three
transverse modes are included.
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Table 2. Experimental values for the spin-wave amplitude b = f/5-1326. Data are collected
from Bohn et al. (1984), Boni et al. (1987a,b, 1991b) and Pieper et al. (1993).

b
Fe 1-5(1) 1-8(1)
Ni 1-5(Q1) 2:1(1)
Co 1-6(2)
EuO 1-3(2)
EuS 1-4(2) 19(3)

the value of the scaling functions at criticality to be y(0) = 5-1326, ¢ becomes ¢ = 87*
(Schinz 1994a). The quantities R. and R; are universal amplitude ratios as defined in
the review article by Privman et al. (1991), £; is a transverse correlation length below
Tc (Privman et al. 1991), and ¢ ; and ¢ _ are longitudinal correlation lengths above and
below T¢ respectively.

The amplitude ffor the spin-wave frequency can be determined from random-phase
approximation (RPA) arguments (for example Schwabl (1971)), which gives f= 2.
This value has been used in consecutive applications of mode-coupling theory on
magnets (Frey and Schwabl 1988a, 1989a) below Tc. Upon using the known values for
the static amplitude ratios (Privman ez al. 1991) it is found that (Schinz 1994a, Schinz
and Schwabl 1994)

f=95+138. (2.58)

This amplitude can also be determined from the available experimental data obtained
by Boni et al. (1984), Béni et al. (1987a,b, 1991b) and Pieper et al. (1993) and references
cited therein. The results are summarized in table 2 (Schinz 1994a, Schinz and Schwabl
1994) where, depending on which experiment (Bohn e al. 1984, Boni et al. 1987a, b,
1991b, Pieper et al. 1993) one analyses, one obtains slightly different values for f

Hence equations (2.51) and (2.52) can be solved by using a dynamic scaling ansatz

I'(g) = Ag™y(x), Alg) = Ag°A(x), (2.59)

where the dynamical scaling functions y(x) and A(x) obey the following set of coupled
integral equations:
+1 EY AT AT
. 2, /p-)7 (x1p)
P(x) = 27 f dy f dp p_*6(p,n) LTX—'O
-1 0 100

1

X _ pz(f)(x/p) + pz_d\)(x/p_) + lpzﬂ(x/p) + ipz_ A*(x/p_) H (2.60)
+1 o . T
seo=2wi [ an [ ap p7iocp.ny LLLIL G
! 0 1)
1 (2.61)

600 — plp) + ipAalp) + g 7Glp )
Here we have used the same notation as in section 2.2.1.

In order to solve those mode-coupling equations, one has to know the static
susceptibilities. In the ferromagnetic phase the global continuous rotation symmetry is
spontaneously broken. Although one of the equivalent directions of the order parameter
is selected, no free energy is required for an infinitesimal quasistatic rotation of the
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Figure 2.5. Dynamic scaling function for ferromagnets with short-range exchange interaction
only against 1/g¢ below T¢ for three different amplitudes of the spin-wave frequency:
( YWf=n¥%(------ ),f=7-65;(—-—),f= 8-20. (From Schinz (1994a) and Schinz
and Schwabl (1994).)

magnetization vector, which in turn leads to a diverging transverse correlation length.
This physical effect is mathematically expressed by the Goldstone (1961) theorem,
stating that there is exactly one massless mode for each generator of the
broken-symmetry group. In the context of a ferromagnet below T¢ this implies that
the transverse susceptibility is given by

1
2J¢%a*’
The longitudinal correlation functions entering these integral equations has been

computed by Mazenko (1976) to first order in ¢ =4 — d using Wilson’s matching
technique:

x'(g) = (2.62)

(1 +4xH1? — 1>>
2x

n+8+(5——n/2)8]
+x2< 9+ (n— 1iaf )’ (2.63)

g2l 9 12
XL(q)—Zan [l n+8x2<1+(1+4x2) ln<

where #n is the number of spin components. The last term in x*(g) results from the
presence of Goldstone modes below T¢, and it implies that also the longitudinal
susceptibility diverges in the limit g — 0 for any temperature below T¢.

The resulting numerical solution of the mode-coupling equations (2.60) and (2.61)
have been achieved by Frey and Schwabl (1988a, 1989a), Schinz (1994a) and Schinz
and Schwabl (1994). The results are shown in figure 2.5 for three different values of
the frequency amplitude f.

One recognizes that the scaling function Im [A(x)] for the frequency shift of the
transverse modes is very small compared with &(x). In the critical region Im [A(x)] starts
at the critical point with infinite slope and is negative in the hydrodynamical region.
The scaling functions for the longitudinal and transverse linewidths split off linearly
atthe critical temperature and differ by orders of magnitude in the hydrodynamic region.
This linear split-off of the longitudinal and transverse widths and the infinite slope of
the frequency shift at the critical temperature below T¢ is an immediate consequence
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Table 3. Asymptotic behaviour of the scaling functions below the critical temperature in units
of the value at criticality y(0).

P(x)/y(0) I'g {(Re[A01}/y(0) {Im {ix)]}/y(0) Im[A(qg));Re[A(q)]

x>1 137+037x " (x) g?¢~ 2 0-16x"Inx —007x *Inx  ¢*¢*?In(1/g&)
x<1 1.0+0-55x 7" 1.0 — 1.34x 0-77x'2 g2 =12 g

of the presence of Goldstone mades below T¢. This feature can be derived analytically
from equations (2.51) and (2.52). The sign of the slope of the longitudinal linewidth
depends on the magnitude of the amplitude f for the frequency of the spin waves. For
values of fclose to the RPA value the slope is positive. If this value is increased towards
the universal value determined by Schinz (1994a) and Schinz and Schwabl (1994) the
slope becomes negative and one obtains a minimum in the longitudinal scaling function
y. The minimum has been observed in a recent experiment by Boni ef al. (1991b)
(see below). Above T¢ the scaling function for the linewidth starts quadratically in
agreement with a renormalization group calculation by Iro (1987), but in contrast with
the numerically found infinite slope of Hubbard (1971a). It disagrees also with a
computation of Bhattacharjee and Ferrell (1985), who predict, using Ward identities,
a linear dependence on 1/g¢.

The numerical data can be fitted in the limits x> 1 (hydrodynamical region) and
x <€ 1 (critical region) by simple approximants as summarized in table 3 (note that all
functions are given in units of the value at criticality y(0) = Re [A4(0)] = 5-1326).

In unpolarized neutron scattering experiments on Fe (Collins er al. 1969), Ni
(Minkiewicz et al. 1969) and EuO (Passell ef al. 1976) no quasi-elastic peak from spin
diffusion, as predicted by the mode-coupling theory (Frey and Schwabl 1988a, 1989a),
was discernible. Only the side peaks originating from the transverse spin waves were
observed. This is plausible in the light of the mode-coupling results (Frey and Schwabl
1988a, 1989a). In the hydrodynamic region (x = 1/g¢ > 1) the width of the longitudinal
peak is much wider than the separation of the transverse peaks (Schwabl 1971).
Moreover, its intensity is smaller than that of the transverse magnons, which altogether
implies that it may be very difficult to distinguish the longitudinal peak from the
background. In the critical region the linewidths are of the same order of magnitude.
In this limit, however, the frequency of the transverse modes tends to zero. Using
unpolarized neutrons, one can observe a superposition of the peaks. Lacking a theory
for the linewidth in the critical region below T¢ it was impossible up to recently to
resolve the longitudinal and transverse peaks.

The first observation of the longitudinal peak was reported by Mitchell ez al. (1984)
using polarized neutrons. This study shows in agreement with the theory that the width
of the quasi-elastic longitudinal peak becomes comparable with the spin-wave energy
explaining why this peak was not observed by neutron scattering experiments with
unpolarized neutrons. However, there are not sufficient data yet to permit a quantitative
comparison with the theoretical predictions. Furthermore, the material is disordered
(Pd with 10% Fe) which makes it not an ideal system (Boni ez al. 1991b). Very recently,
Boni et al. (1991b) have investigated the spin dynamics of a Ni single crystal by means
of polarized neutron scattering. They observe that the longitudinal fluctuations are
quasi-elastic in agreement with our theoretical predictions (Schwabl 1971, Frey and
Schwabl 1988a, 1989a) and renormalization group calculations (Ma and Mazenko
1975). In figure 2.6 we show a quantitative comparison of the longitudinal linewidth,
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Figure 2.6. Comparison of the longitudinal linewidth with the polarized neutron scattering
experiments on Ni (Boni et al. 1991b). All line-widths are normalized to unity at criticality.
The result of mode-coupling theory is shown for three different values of the spin-value
frequency amplitude: ( ), f=n¥% (------ ), f=7-65; (—-—), f=820. (From
Schinz (1994a) and Schinz and Schwabl (1994).)

obtained from solving the mode-coupling equations in the Lorentzian approximation
(Zobel 1991, Schinz 1994a, Schinz and Schwabl 1994), with the experiment (Boni et
al. 1991b). The light broken line represents the result of the mode-coupling equations
with an amplitude f= n*?, taken from random-phase approximation arguments. The
solid curve and the chain curve represent the results of solving the mode-coupling
equations with an amplitude of f= 5-1326 X 1-49 and f= 5-1326 X 1-60 respectively.
The agreement between theory and experiment is quite well for an appropriate choice
of the universal amplitude. One should especially note that the scaling function of the
longitudinal linewidth shows a minimum in accord with the experimental data.

Finally we note that the above analysis does not take into account effects from the
dipole—dipole interaction. Those effects have up to now not been studied quantitatively
in the ferromagnetic phase, but one may expect similar effects as above Tc, which we
are going to describe in the next section.

2.3. Renormalization group theory

2.3.1. Paramagnetic phase
Renormalization group calculations of the critical dynamics of ferromagnets start
from a stochastic equation of motion for the spin density S(x,?):

ON x4
4+ AV —+ .
AfS X 3S AV 35 ¢, (2.64)

aS(x,1)
at

where {(x, 1) is a random force with a Gaussian probability distribution with zero mean
and variance

{i(x, DE(X', 1)y = 2Tkp TS (x — x")(t — ')V (2.65)

The effective Landau—Ginzburg—Wilson free energy functional is given by

# = f dx [%(r|$|2 +|VSP) +% (|s|2)2]. (2.66)
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These equations can be derived (Kawasaki 1973, Mori and Fujisaka 1973, Mori ef al.
1974) using a Mori~Zwanzig projection operator formalism (Zwanzig 1961,
Mori 1965) (see also section 6). An exhaustive discussion of these semiphenomenolog-
ical equation of motion can be found in the article by Ma and Mazenko (1975).
The first term in equation (2.64) describes the Larmor precession of the spins in the local
magnetic field, 8#/38S, and the second term characterizes the damping of the conserved
order parameter. The precession term of the spins in the local magnetic field plays a
major role in the dynamics. From the RG analysis by Ma and Mazenko (1975) and
Bausch et al. (1976), one can infer that its effect can be ignored above the upper critical
dimension d. = 6 and can be treated by perturbation theory in e =6 —d.{

The RG theory proves (Ma and Mazenko 1975, Bausch ez al. 1976) the dynamical
scaling hypothesis (Ferrell et al. 1967a,b, 1968, Halperin and Hohenberg 1967, 1969)
and shows that the spin correlation function fulfils the dynamical scaling form near the
fixed point given by

1

C(q7 fa (D) = X(q9 é) VRN ¢(x’ V), (2-67)
wC(q7 é)
with the scaling variables x = 1/g¢ and
w
V= (2.68)
wc(q1 é)

where the characteristic frequency has itself the scaling form

wd(g, ) = Ag*x). (2.69)

The dynamic critical exponent z is known exactly from RG theory (Ma and Mazenko
1975, Bausch et al. 1976, Janssen 1976):

_d+2—q

2 k]
in accord with the general dynamic scaling considerations of section 2.1. Here # is the
Fisher exponent from the static scaling law

g, =g "3, (271
The Fourier transform of the spin correlation function can be written in the form

z (2.70)

1 2
C 31 = ] s R ( . — ), 2.72
(g,¢, @) = x(q. %) w7 e\ T oo (2.72)
where I1(x,®) is the self-energy of the dynamic susceptibility and we have defined
@ = w/Ag°. The asymptotic behaviour of the self-energy is known exactly from a RG
analysis (Bausch et al. 1976, Dohm 1976):

¥~ {cﬁ — o,
O, @)~y ,_ fi 2.7
(x, @) {x4 . or s Q.73)
One-loop RG calculations give to order O(g)
I(x,®) =1 — e[F(x,id) + 1 1n 2] + O(&?), (2.74)

+ The upper critical dimension for the corresponding static problem (see Hamiltonian in
equation (2.65)) is d. = 4. Since the precessional term is of second order in the equations of
motion corresponding to third order in the Lagrangian the upper critical dimension is shifted to
d.=6.
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with (Dohm 1976, Iro 1987)

~4In(—i®)—¢In2 + 0@~ "), B> 1, 2.75)
F(0,id) = _@+y 3e+2m2-mio  fory '
8 8
and (Ma and Mazenko 1975, Iro 1987)
In2+3
——%lnx—(n—z—“)—%x_z, x>1,
F(x,0)= f 2.76
@OV map Gr-Z-smae (2-76)
- 3 + 1 s x<k1.

In an ¢ expansion with respect to the upper critical dimension d. = 6 the ¢* term is
irrelevant for 4 < d; hence the static critical behaviour is classical. This is no longer the
case for d <4, a fact which has to be kept in mind if one extends the results of the
renormalization group ¢ expansion to ¢ = 3. The explicit form of F(x, i®) to order O(e)
can be found in the paper by Iro (1987). The logarithms in the limits (x = 0,v— %)
and (x — %, v—0) are the O(g) contributions of the power-law behaviour in equations
(2.73) which are known exactly for any dimension d. Exponentiating these logarithms
in such a way that the exactly known asymptotic behaviour in equations (2.73)
is matched, one obtains (Bhattacharjee and Ferrell 1981, Iro 1988, 1989) the
two-parameter interpolation formula

H(x,®) = [(1 + bx?)> ™ — aid]"® 2, (.77)

with =046 (a=z(6 +61In2 — 3m)/4) and b =3-16 for ¢ =3. This reasoning for
exponentiating the leading logarithms of a first-order ¢ expansion to match the exactly
known asymptotic results is due to Bhattacharjee and Ferrell (1981). One should note,
however, that this exponentiation procedure is not unique. To test the validity of the
exponentiated expression, one would have to calculate contributions to order O(?)
which would be quite cumbersome a task.

The shape function

1
, ) =2R ( - ) 2.78

0B = 2R o D) @78
shows the crossover form the critical shape at x=0 to a Lorentzian at x= o in
agreement with the mode-coupling results by Hubbard (1971a) and a more recent
reanalysis by Aberger and Folk (1988a). From equation (2.72), one can also determine
the half-width at half-maximum . defined by

Cg. & wc) = $C(q,£,0). 2.79)

In figure 2.7 the scaling function w.(x) resulting from equations (2.72) and (2.79) is
compared with mode-coupling (MC) results (Résibois and Piette 1970, Aberger
and Folk 1988a). Whereas the MC result in the Lorentzian approximation (Résibois and
Piette 1970) shows large deviations from the RG-result in the hydrodynamic limit, the
complete MC result abandoning the Lorentzian approximation (Aberger and Folk 1988)
follows closely the RG scaling function. One should note, however, that if all scaling
functions are rescaled in such a way that they coincide in the hydrodynamic limit, the
differences between the scaling functions appear much less pronounced.

Letus now compare the theoretical predictions with the experiment. In early neutron
scattering experiments almost all data have been fitted by a Lorentzian shape function.
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Figure 2.7. Comparison of the linewidth obtained from mode-coupling and renormalization
group analysis. (From Iro (1989).)

Recently, however, with the advances in neutron scattering techniques leading to higher
intensities and better resolution, deviations of the measured spectra from a Lorentzian
have been observed. By comparing the RG result at 7 (Dohm 1976, Bhattacharjee and
Ferrell 1985) with constant energy scans on Fe (Wicksted et al. 1984, Lynn 1975, 1983)
it has been shown (Folk and Iro 1985) that theory was in accord with the data in the
observed experimental wave-vector and frequency window. As has been demonstrated
by Boni et al. (1987a) the peak positions as well as the peak profile in constant-energy
scans of EuO could be explained on the basis of RG theory, taking into account
short-range exchange interaction only, for wave-vectors in the range 0-15 A=<g=<03A
and energies 0-2meV <0-4meV.

If amodel based on the exchange coupling between neighbouring spins is the correct
description of the critical behaviour of real ferromagnets, one would have expected that
the results from RG and MC theories would become even closer to the experimental
data as one comes close to the critical temperature or/and for very large wavelengths.
It came as a completely unexpected surprise, when Mezei (1986) found in spin echo
experiments on EuO that the observed shape at even smaller wave-vectors
q=0-024 A" clearly resembled a Lorentzian shape in disagreement with the
predictions of RG theory for the dynamics of an isotropic Heisenberg ferromagnet,
which would give a bell-shaped decay.

As we shall explain in section 3 this ultimate crossover to a Lorentzian can be
explained by taking into account the long-range dipolar interaction. Further evidence
of dipolar effects have been found in EuS, where it was observed that the peak positions
(in constant-E scans) do not scale (B6ni et al. 1988).

Concerning the linewidth the experimental situation is as follows. Right at the
critical temperature there is almost perfect agreement of the wavevector dependence
of the linewidth with I' ~ ¢ in EuS (B6ni et al. 1987b), EuO (Dietrich et al. 1976,
Mezei 1984, Boni and Shirane 1986), Fe (Collins ez al. 1969, Mezei 1982a, b, Wicksted
et al. 1984) and Ni (Minkiewicz ef al. 1969, Boni et al. 1991b). In early experimental
studies on Fe it seemed that the experimental data (Parette and Kahn 1971, Parette 1972)
are in reasonable agreement with the theoretically predicted scaling function of Résibois
and Piette (1971). Recent neutron scattering experiments, however, showed large
deviations from the Résibois—Piette scaling function in Fe (Mezei 1982a, b, 1984), EuO
(Mezei 1988, Mezei et al. 1989) and EuS (Boni et al. 1991a). This puzzling situation
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can only be resolved by additionally taking into account the dipolar interaction, which
is the subject of sections 3 and 4.

2.3.2. Ferromagnetic phase

The critical dynamics below the transition temperature have also been studied by
renormalization group methods. Ma and Mazenko (1975) calculated the transport
coefficient for the longitudinal magnetization for small wave-vectors in an & expansion
(e = 6 — d). Their result was

r
I'g)= F((% 7, (2.80)
with
[ ocg@ o8, (2.81)

With x“(g) « 1/ in d = 3 dimensions this would give I'(g)  ¢°” in contradiction to the
mode coupling result for small g (i.e. in the hydrodynamic limit (Résibois and
Pictte 1970)). However, Sasvari’s (1977) reanalysis of Ma and Mazenko’s (1975)
exponentiation method showed that taking into account the regular parts of 10
results in

F(g)xq“™ 9. (2.82)

This leads to I'(q) * ¢q* for d =3 dimensions, in agreement with the mode-coupling
result in table 3. The g* dependence of the transverse transport coefficient in the
hydrodynamic limit is also confirmed by the renormalization group calculations
(Ma and Mazenko 1975).

A thorough renormalization group study of the critical dynamics of a Heisenberg
ferromagnet below T is still lacking. Such a study would have to take into account all
the peculiarities resulting from the presence of the Goldstone modes below Tc. As a
first step towards this end, there is a recent study (Tduber and Schwabl 1992) of the
critical dynamics of the O(n)-symmetric relaxational models with either non-conserved
(model A) or conserved order parameters (model B) below the transition temperature
(see also section 5).

3. Dipolar ferromagnets

In this section we review the static and dynamic critical behaviour of dipolar
ferromagnets, that is spin systems with both short-range exchange and long-range
dipole—dipole interactions. Special emphasis is put on the discussion of the
mode-coupling theory in the paramagnetic phase.

However, before turning to the detailed analysis we would like to emphasize the
following characteristic features of the dipole—dipole interaction, which have important
implications on the critical dynamics.

(1) In contrast with the short-range exchange interaction the dipolar interaction is
long ranged and thus dominates the asymptotic critical behaviour of
ferromagnets.

(2) It introduces an anisotropy of the spin fluctuations longitudinal and transverse
to the wave-vector q. This implies that the longitudinal static susceptibility
remains finite for q—0 and T— T¢ (Aharony 1973a, Aharony and Fisher
1973).
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Table4. Coefficients in the Taylor expansion of A:” for three-dimensional cubic lattices. (From
Aharony (1973b, ¢).) ¢ denotes the coordination number, v, the volume of the primitive
unit cell and o; are lengths characterizing the dipolar interaction.

Uy [0 4] 2% as
Lattice c (units of &°) (units of a) (units of a) (units of a)
S.c. 6 1 1.2755 0-1649 17700
B.c.c. 8 4/332 1-7420 - 0321 0-8210
F.c.c. 12 172172 2-8313 —0-355 1-823

(3) The order parameter is no longer conserved as can be inferred from the
equations of motion.

(4) The strength of the dipolar interaction introduces, besides the correlation length
&, a second length scale g, ', where gp is the so-called dipolar wave-vector
defined below. This leads to generalized scaling laws for the relaxation
functions and the line widths.

3.1. The model Hamiltonian
Our starting point is a Hamiltonian for a spin system including both isotropic
short-range exchange and long-range dipolar interactions:

H= -2, (Jud*+APs:st, (3.1)
[#7
where Jy denotes the short-range exchange interaction, usually restricted to nearest or

next-nearest neighbours, and A is the dipolar interaction tensor given by

5% 30— x) e — xp) >
¥ )

A = — HgLus) <|x (3.2)

1—X1'|3_ |X1—X1’

Here g is the Landé factor, and g the Bohr magneton. As shown by Cohen and Keffer
(1955), the lattice sums

AP =7 Afexp(iq-x) (3.3)
1+0

can be evaluated using Ewald’s (1917a,b, 1921) method, and one finds for infinite 3D
cubic lattices (Cohen and Keffer 1955, Aharony 1973a,b, Aharony and Fisher 1973)

. 4n 3q°q"
Ava=3(eLps) ['é“ (Saﬁ - %)

+ aug*q” + [ong® — a3(g")*18% + O(g*, (g™, (q"‘)2(q”)2)], (3.4
where v, is the volume of the primitive unit cell with lattice constant a, and «; are

constants, which depend on the lattice structure (table 4). Upon expanding the exchange
interaction

Ta= Joexp(iq-x) = Jo — Jg’a® + O(q"), (3.5)
1

and keeping only those terms which are relevant in the sense of renormalization group
theory, this results in the following effective Hamiltonian for dipolar ferromagnets:
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& B
H=§q‘, (—Jo +Jq'a® +Jg z;}?—) 5% oShs (3.6)
where the Fourier transform of the spin variables is defined by
Si= vl— > S7exp(iq- x). 3.7
N7
Here we have defined a dimensionless quantity g as the ratio of the dipolar energy

(gLpp)*/a® and exchange energy 2J, multiplied by a factor of 4na®/v,, which depends
on the lattice structure:

4na’ (gLup)’a’ . dipolar energy
g =

Va 2J exchange energy - (3.8)
Strictly speaking there are dipolar corrections O(g°) to the exchange coupling.
However, those can be neglected, since the strength of the dipolar interaction is small
compared with the exchange interaction.

The dipolar interaction induces an anisotropy of the static as well as the dynamic
spin—spin correlation function with respect to the wave-vector q. It was shown by
Aharony and Fisher (1973) that the static transverse susceptibility diverges with the
dipolar critical exponent y as the critical temperature is approached, whereas
the longitudinal susceptibility remains finite. The finite value is inversely proportional
to the strength of the dipolar interaction g. The dipolar anisotropy becomes substantial
when ¢? + £ 72 < g}, where the dipolar wave-vector is defined as g = (gpa)’. The strong
suppression of the longitudinal fluctuations has been observed in EuS and EuO by
polarized neutron scattering experiments (Kotzler et al. 1986).

The matrix of the static susceptibility is given by

7°q’

q’
where one often uses the Ornstein—Zernike forms for the longitudinal and transverse
susceptibilities given by

o B
@@= (67 —LL) + ¥z 9) (3.9)
q

X' :qz—_'_éj, (3.10)
XL(g,Q)=52—_"_—qu—_T_—§—_§, 3.11)
with the non-universal static amplitude
2
r= (“"’;J“;) . (3.12)

Conventional mode-coupling theory does not account for effects of the critical exponent
n, which will be neglected in the followingt. Here &= &[T — Te)/Tc]l v is the
correlation length. The static crossover from Heisenberg to dipolar critical behaviour
is partly contained in & through the effective temperature-dependent exponent
(Bruce et al. 1976, Frey and Schwabl 1988b, 1991) v = y.¢/2. The full dipolar crossover

1 For a refined version of mode-coupling theory with allows for a consistent treatment of the
Fisher exponent # see section 6.
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in the static critical behaviour has previously been studied (Bruce et al. 1976,
Nattermann and Trimper 1976, Bruce 1977, Frey and Schwabl 1988b, 1991).

The tensorial structure of the static susceptibility suggests a decomposition of the
spin operator S into one longitudinal and two transverse components with respect to
the wave-vector q, that is

Sq =S4+ Sgt(4) + STH(q), (3.13)
where the orthonormal set of unit vectors is defined by
qgXe;
@+
For vanishing components of q the limits are taken in the order of increasing Cartesian
components.

From the Hamiltonian (equation (3.16)), one deduces the following microscopic
Heisenberg equations of motion (Frey 1986, Frey and Schwabl 1987)

G=-=, t@-= P@=gx1@. (3.14)

o e

d%St= @ ’é“zd;f [q *(2k — @Ik + )" {Sql ke Sk} + ka{SqL k. Sk}
+ g(ki + k) { STy, S'ﬁ}], (3.15)
d%SZ= - Ja? ‘(’;d?fl[ "2k —q) ((kz +k;62)31,2 (Saht Sk} + kST, ST2)
b st L skt - 1)
¢ (v im 5350+ ?ﬁig@%m siwsh)] 1

and for S "gz correspondingly, where {,} denotes the anticommmutator. The terms
proportional to g, resulting from the dipolar term in the Hamiltonian remain finite as
the wave-vector q tends to zero, whereas all the other terms vanish in this limit. This
is responsible for the fact that the dipolar forces lead to relaxational dynamics in the
limit of long wavelengths, that is the order parameter is no longer a conserved quantity.

3.2. Mode-coupling theory for the paramagnetic phase

3.2.1. General mode-coupling equations
As we have explained in section 2, mode-coupling theory amounts to a factorization
approximation for the transport coefficients

I'(q, g, t)=(iLL”L)2

x(q.8)
(gL,uB)
x'(q.8)
z(gLMB)
', 8)

The mode-coupling equations resulting from considering two-mode decay processes
have been derived by Frey (1986) and Frey and Schwabl (1987) (x =L, T) and are

($q, 1), $(q.0)), (3.17)

FT(‘I, 8, t) - (STl(q’ t)7 STl(q O))

($™(q,1, $™(q,0)). (3.18)
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given by

kT L d3
g, 2,0 = 2200 —2L_ [ %29KS ok .2,0)(67T + 52 TP

(guus)* ) @) 54
y Kk 2)x°(q—k,g)
X, 8)

Here the k integration runs over the first Brillouin zone. The vertex functions vg, for
the decay of the mode « into the modes f§ and ¢ are given by (Frey and Schwabl 1987)

®'(k, g,0)0°(q — k. 8, 1). (3.19)

L 4 2 (kcosO 1 2
UTT(kv q,8, ’1) = 2q COS 0 - 5 (3.20)
) kcosf 1 2

dka(k, 4, 8.1) = 24* sin* (T'E +2iq2) (3.21)
. kcosf® 1\’ 7

vir(k, g, 8, n) = ¢* sin® 0 < 4 _5> (1 +5|q—_q2‘>, (3.22)
kcosf 1 2 2 .
. kcosf 1\2 2

oT (k. g, g 1) = g sin 0 (—— - -2-) 2—|qq——k|5’ (3.24)

with #=cos6. In passing we note that there were certain attempts to develop a
mode-coupling theory already 20 years ago, although nobody succeeded in deriving the
appropriate mode-coupling equations. A type of mode-coupling calculation was used
by Huber (1971) to determine the uniform spin relaxation for temperatures larger than
the dipolar crossover temperature. This analysis was extended by Finger (1977b), who
put forward certain scaling estimates and computed the uniform spin relaxation in the
strong dipolar region. An attempt to construct a mode-coupling theory was launched
by Borckmans et al. (1977), using an incomplete basis and ending up with equations
containing undetermined vertices. The theoretical and experimental situation was rather
controversial and no explanation was available for the apparent contradictions (Kotzler
1986, Mezei 1987). Only in 1986 was a complete self-consistent mode coupling theory
developed by Frey (1986) and Frey and Schwabl (1987) and its various properties and
consequences were studied in detail (Frey and Schwabl 1988a,b, 1989a, Frey
et al. 1988, 1989). Some of the results were confirmed numerically by Aberger and Folk
(1988b, 1989) and by Kalashnikov and Tret’jakov (1990a,b, 1991) using analytical
approximants.

The mode coupling result for the transport coefficients (equation (3.19)), together
with the relation

a t
a g, g, 0)= — f dt (g, 8.t — 1)9%(q. 8, 7) (3.25)
0

for the Kubo relaxation functions constitute, as in section 2, a complete set of
self-consistent equations.

As emphasized before, the dipolar interaction introduces a second length scale i
besides the correlation length &. This entails the following extension of the static scaling
law for the spin susceptibilities:

14q, &, 8) =Yg (), (3.26)
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with the scaling variables

x=— and y=—. 3.27)

Note that here and in the remainder of this section we have explicitly indicated the
dependence of the susceptibility on the correlation length. In all other parts of this
review we suppress this dependence for notational convenience. Since the vertex
functions vj, are proportional to the fourth power of the wavenumber, that is vj, q°,
and because of the homogeneity of equation (3.26), the relaxation functions and
linewidths derived from equations (3.19)—(3.25) obey the dynamical scaling laws

D(ql, gl wF) = 17P(q, £, g, ) (3.28)
and
I“(ql, gl*, oF) = FI'"(q, &, 8, ), (3.29)

with z = 3 and a scaling parameter I. We emphasize that, despite z assuming the isotropic
value 3, there is a crossover to dipolar critical behaviour contained in the functional form
of the correlation functions, as will become clear below.

An immediate consequence of equation (3.29) is the following scaling property of
the characteristic longitudinal and transverse frequencies wi(q, &, g):

(g ¢, 8) = AqQ(x, y), (3.30)

where A is a non-universal coefficient.
Now there are various ways to rewrite the scaling laws equations (3.28) and (3.29)
by appropriate choices of the scaling parameter .. If one sets /=g~ !, one finds that

... {1 g @
P(q,¢, g, 0)=q *P* <_,—,—Z> (3.31)
“e8 7 9’ ¢ q
and
(1 g o
I"OC( ’é’gyw)z Fa <—_’_’—Z->' (3.32)
? d ¢’ q q

A disadvantage of the representation given in equations (3.31) and (3.32) is that the
crossovers both of the time scales and of the shapes of the correlation functions are
intermixed in @*. Since the time scales for the isotropic and dipolar critical and
hydrodynamic behaviours differ quite drastically, it is more natural to measure
frequencies in units of the characteristic frequencies. Hence we fix the scaling parameter
by the condition

1
= 3.33
Ag*Q%(x,y) ( )
and find from equations (3.31) and (3.32) the scaling forms
1
@0!( s és » (O :—a—‘— Ol(x, ,Va) (3'34)
g,¢, 8, ) qug(x,y)qb y
and
I'(q, £, 8, w) = Ag*Q%(x,y)7*(x, ¥, Va), (3.35)
with the scaling variable for the frequency
w
= ——— 3.36
" Ag ey ©-36)

With equation (3.33), one has separated the crossover of the frequency scales and the
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crossover of the shapes of the correlation functions. The former mainly is contained in
Q%x,y), and the latter in ¢*(x,y, v,).

There is still some freedom in the choice of the characteristic frequencies ; in
equation (3.33); for instance, one could take the half-width at half-maximum (HWHM)
of the frequency-dependent Kubo functions. This, however, would require to solve
equations (3.19) and (3.25) simultaneously for the time scales and the shapes of the
correlation functions. Therefore, in the following, we shall use as characteristic
frequencies the half-widths resulting from the Lorentzian approximation for the line
shape (see section 3.3). The Lorentzian linewidths qualitatively obey the same scaling
laws as the HWHM and have the same asymptotic (hydrodynamic, dipolar and
isotropic) properties. Thus this choice for the characteristic frequencies solely is a
matter of numerical convenience and does not introduce any approximations in the final
result. From the final result, one can obtain the HWHM and rewrite the scaling functions
in terms of these new variables.

Equations (3.34)-(3.36) imply for the Laplace transformed quantities the scaling
laws

D%(q, ¢, 8,0 = ¢*(x, ¥, T) (3.37)
and
(g, &, 8.1 = [Ag°Q*(x, )IPY(x, ¥, Ta), (3.38)
where the scaled time variables 7, are given by
Ty = AG*Q%(x, y)t. (3.39)

One should note that the characteristic time scales 1/44°Q2%(x, y) are different for the
longitudinal and transverse modes. This is mainly due to the non-critical longitudinal
static susceptibility, implying that the longitudinal characteristic frequency Ag°Q"(x, y)
shows no critical slowing down asymptotically. In other words for T=T¢ and g — 0
the longitudinal characteristic frequency does not tend to zero, which implies an
effective longitudinal dynamical critical exponent Z=0 for the wave-vector
dependence in the limit ¢ — 0. In comparison, the effective exponent for the transverse
characteristic frequency at 7¢ shows a crossover from za =3 10 74 = 2 (see also the
following section). This mode-coupling result disagrees with a calculation based on
nonlinear spin-wave theory, where zoee = 1is found in the dipolar region (Maleev 1974).

Inserting equations (3.37)—(3.38) together with the static scaling law (3.26) into
equations (3.19) and (3.25) we find the following coupled integrodifferential equations:

2 pt+1 Peut
Yy 1) =2 (L) f dr f dpp2 S, 03,0y, p )87 + 8 TEHIE)
&(x,y) -1 0 Bo
PPl p, yIp)3° (il p -, yIp-) X
x AP YPIX XD YL 4p (—,X, raﬂ(x,y,p)>
25 y)
X
X ¢° <—, e Too(X, Y, p—)> (3.40)
p-" p-
and
d o
a_-qb“(x, Vo To) = — f dz y*(x, y, To — T)OH(x, ¥, 1), (3.41)
4 0

connecting the scaling functions for the transport coefficients with the scaling functions
for the Kubo relaxation functions. In equation (3.40) we introduced the notations
p=klg, p- =|q—kl/g,n=cos(q,k) and T5(x,y, ) = ot QP(x/ i, y1)IQ*(x, )-
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The non-universal frequency scale resulting from the transformation of equation

(3.19) in equation (3.40) is
a*? (2JksT\"*
=5 () (3.42)

The apparent critical dynamic exponent contained in equation (3.40) equals z=3.
However, as noted before, the crossover to dipolar behaviour is contained in the scaling '
functions for the transport coefficients y*(x, y 1), the scaling functions for the Kubo
relaxation functions ¢*(x,y,7,) and the scaling functions of the characteristic
frequencies 2%(x, y).

The scaled vertex functions appearing in equation (3.40) are (Frey and Schwabl
1987)

1
Op = [27125““ +(1 - '12)<5ﬁ’T + F) 80Z’T](P”I -2 (3.43)
A 250, L 2 1 0T 1y 2
Bie=[201 — 1) — (1 — p?) 1+—p2 5T |m—5+%).  Gad)

which are related to the vertex functions vj, of equations (3.20)—(3.24) by v, = q“ﬁﬁa.
For both longitudinal and transverse modes, the dipolar interaction enters only in
vertices involving decays into a longitudinal and a transverse mode, since the dipolar
interaction enters the Hamiltonian only through the longitudinal modes.

Because the k integration is restricted to the Brillouin zone the p integration of
equation (3.40) contains the cut-off

Pt =———=—Y, (3.45)
do
where ggz denotes the boundary of the first Brillouin zone. All other material-dependent
parameters are contained in the frequency scale A. The cut-off is important for small
times, because the integrand of equation (3.40) is of the order of unity for =0 and
p = 1. Hence, for small times, wave-vectors near the zone boundary also contribute to
the relaxation mechanism.
As explained before, in the numerical solution of the MC equations one has taken
(Frey et al. 1988, 1989) for the characteristic frequencies the linewidths resulting from
the Lorentzian approximation of the MC equations, that is

Q%% ¥) = Yoz, ). (3.46)

Using as input the solution of the mode-coupling equations in the Lorentzian
approximation one can solve the complete set of MC equations for different values of
guz. Because there are three scaling variables (x, y and v,) it is impossible to present
here all the numerical results. Instead, in section 4, we shall concentrate on a limited
number of temperatures and wave-vectors motivated by the available experiments on
the substrate of primary interest, namely EuS, EuO and Fe.

3.2.2. The Lorentzian approximation

For later reference we want to close this section by quoting the results from the
so-called Lorentzian approximation (Frey and Schwabl 1987, 1988a, 1989a).
The results of the numerical solution of the full mode-coupling equations will be
discussed in section 4 in conjunction with the experimental data.
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Table 5. Asymptotic behaviour of the scaling functions for the longitudinal and transverse
Lorentzian linewidths in the paramagnetic phase. The different regions, namely dipolar
critical, isotropic critical, dipolar hydrodynamic and isotropic hydrodynamic are defined
as follows: dipolar critical, y > 1, x < 1; isotropic critical, y<€1, x<1; dipolar hydro-
dynamic, y > x, x> 1; isotropic hydrodynamic, y <<x,x> 1.

Region pT e
Dipolar critical y2 2
Isotropic critical 1 1

Dipolar hydrodynamic yi22 P
Isotropic hydrodynamic x12 X2

If the transport coefficients vary only slowly with w, we may approximate the
relaxation functions by Lorentzians, that is we replace the transport coefficients by their
values at w =0:

I'tlg,&.8)=T"(q,E,8,0=0), I (q,£8=T"q,¢gw=0). (347)

Despite a Lorentzian being not the correct shape of the correlation function for all values
of the scaling variables, the resulting linewidths obtained in the Lorentzian
approximation already capture most of the crossover in the time scale.

The Lorentzian linewidths obey the scaling law

I1u(q, &, 8) = Aq i, y)- (3.48)

From equation (3.20) itis then easily inferred that the scaling functions of the Lorentzian
linewidths y7.(x,y) are determined by the coupled integral equations

2n? (! *
¢ (x, ):T_f d f dp p~? 0%y, p, 1)
Halty) =z | dn) dpp ;g 5, P11

2B g
- " - 2l p, ylp)F(xlp-, ylp-)
X (87T + 8% T8H 157 —5 1 PP

0 Yelx 0, ¥1P) + p"2 YL XIp—, yIp-)
As summarized in table 5 the mode-coupling equations (3.49) can be solved analytically
in the dipolar (D) and isotropic (I) critical (C) and hydrodynamic (H) limiting regions.
These regions are defined as follows: DC,y> 1,x< 1;IC,y <€ 1,x<1;DH,y > x, x> 1;
IH, y<x, x> 1.

Concerning the critical dynamic exponent, one finds for the longitudinal linewidth
a crossover from z =3 in the isotropic critical region to z =0 in the dipolar critical
region, whereas for the transverse linewidth the crossover is from z=3 to z=2.
The precise position of the crossover can only be determined numerically.

The numerical solution (Frey 1986, Frey and Schwabl 1987) of equation (3.49)
shows that the dynamic crossover for the transverse width is shifted to smaller
wave-vectors by almost one order of magnitude with respect to the static crossover,
whereas the crossover for the longitudinal width occurs at the static crossover. For the
numerical solution of the mode-coupling equations it is convenient to introduce polar
coordinates

(3.49)

r=u?+yH"”? and (p=tan_l<§).

The transverse and longitudinal scaling functions y"(r, ) and y“(r, @) are shown in
figures 3.1 and 3.2 as functions of the radical scaling variables  and ¢. A different
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Figure3.1. Scaling functiony” for the transverse width in the Lorentzian approximation against
r=1/gé[1 + (gn&)*1"? and ¢ = tan~ ! (gp¢).
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Figure 3.2. Scaling function y" for the transverse width in the Lorentzian approximation against
r= /g1 + (gp)*1"* and ¢ = tan™ ! (gp<).

representation of the results can be given by plotting the linewidth against the single
scaling variable x for several values of ¢. This is shown in figures 3.3-3.5 where we
have drawn the two-parameter scaling functions yeX(x,y) in units of the value at
criticality, 7o = yrP(0, 0) =~ 5-1326. The physical content of the two-parameter scaling
surfaces is illustrated best by considering cuts for fixed gp and various temperatures.
In figures 3.3 and 3.4 the scaling functions against x = 1/¢¢ are displayed for different
values of ¢ =tan™ ! (gp) = Nr/20 with N=0,1,...,9. For ¢ =0, corresponding to
vanishing dipolar coupling g, the scaling functions coincide with the Résibois—Piette
scaling function. If the strength g, of the dipolar interaction is finite, the curves approach
the Résibois—Piette scaling function for small values of the scaling variable x and
deviate therefrom with increasing x. For a given material, gp is fixed and the
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Figure 3.3. Scaling function y” for the transverse width in the Lorentzian approximation against
L/g¢ for values of ¢ = Nn/20 with N indicated on the graph.
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Figure 3.4. Scaling function y~ for the longitudinal width in the Lorentzian approximation
against 1/g¢ for values of ¢ = Nn/20 with N indicated on the graph.
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Figure 3.5. Scaling functions for the transverse ( ) and the longitudinal (—.—) widths
against g/gp in the Lorentzian approximation at the critical temperature. The inset shows
the scaling functions for the transverse ( ) and the longitudinal (—-—) Onsager
coefficients against ¢/gp at the critical temperature.
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parametrization by ¢ corresponds to a parametrization in terms of the reduced
temperature (T — T¢)/Tc.

To examine the dipolar crossover precisely at the Curie point, figure 3.5 displays
the scaling function for the transverse and longitudinal width at T= T¢ against the
wavenumber, thatis y ~ ! = g/gp. This graph shows that the crossover from the isotropic
Heisenberg to dipolar critical dynamics in the transverse linewidth occurs at a
wavenumber which is almost one order of magnitude smaller than the static crossover
wave-vector gp. The crossover of the longitudinal width, from z = 2.5 to z = 0, is more
pronounced and occurs in the intermediate vicinity of gp. The reason for the different
location of the dynamic crossover is mainly that it is primarily the longitudinal static
susceptibility which shows a crossover due to the dipolar interaction. Since the changes
in the static critical exponents is numerically small, the transverse static susceptibility
is nearly the same as for the ferromagnets without dipolar interaction (Aharony 1973a,
Aharony and Fisher 1973). Hence the crossover in the transverse width is purely a
dynamical crossover, whereas the crossover of the longitudinal width which is
proportional to the inverse static longitudinal susceptibility is enhanced by the static
crossover. In order to substantiate these arguments we have plotted in the inset of
figure 3.5 the scaling functions of the Onsager coefficients 7%y* at the critical
temperature against g/gp, showing only the dynamical crossover.

3.2.3. Selected results of the complete mode-coupling equations

All the scaling functions for the dipolar ferromagnet depend on the three scaling
variables x = 1/g¢, y =gplq and v, = w/Ag°Q%(x,y). Therefore it is impossible to
present all the results obtained from the numerical solution of the complete
mode-coupling equations. In this section we intend to review the most important
features of the shape and linewidth crossover reported by Frey et al. (1988, 1989).
Further results and discussion will be presented in the next section in conjunction with
a comparison with experimental data.

The results from the Lorentzian approximation show that the dipolar linewidth
crossover in the transverse linewidth sets in at a wave-vector almost one order of
magnitude smaller than the dipolar wave-vector gp. In order to obtain information about
the line shape, one has to dismiss this approximation and to solve the complete set of
mode-coupling equations, equations (3.40) and (3.41). This has been achieved by
Frey et al. (1988, 1989), and one finds the following crossover scenario. First of all,
the crossover in the line shape sets in at wave-vectors of the order of the dipolar
wave-vector.

Let us first consider the case of temperatures very close to T = T¢. Figures 3.6 and
3.7 show the transverse and longitudinal scaling functions ¢*(r, @, 7,) against the
scaling variables r and 7, for ¢ = 1-49. Referring to EuO, characterized by the
(non-universal) parameters gp = 0-147 A~ L Te=69-1K and & =1-57 A, this
corresponds to a temperature 7= (1 + 0-003)7¢. The line shapes of the longitudinal and
transverse relaxation function agree in the isotropic Heisenberg limit, that is for »— 0
corresponding to large values of the wave-vector ¢ (= ¢p). In this limit the dipolar
interaction becomes negligible and the shape is of the Hubbard-Wegner type as
discussed in section 2. Upon increasing the value of the scaling variable » the line shapes
of the transverse and longitudinal relaxation functions become drastically different.
Whereas the transverse relaxation function shows a nearly exponential decay,
pronounced overdamped oscillations show up for the transverse relaxation function.
The shape crossover is also shown in figure 3.8, where the transverse and longitudinal
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Figure 3.6. Scaling function of the transverse Kubo relaxation function ¢*(r, @, tr) at ¢ = 1.49
(close to the critical temperature) against 77 and r = [(qp/q)® + (1/g&)*12.
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Figure 3.7. Scaling function of the longitudinal Kubo relaxation function ¢'(r, ¢,7) at
@ = 1-49 (close to the critical temperature) against 7. and r = [(gp/q)* + (1/g&)*]".

relaxation functions are plotted against the scaling variable t, for three different values
of the scaling variable r = (x> + y»)'2 (r=0, r=1 and r = 10).

For temperatures well separated from ¢, that is gp& < 1, the dipolar interaction
become negligible. Hence, the difference between the shape crossovers of the
longitudinal and transverse relaxation functions diminishes with decreasing gpé. For
gné < 1 the shape crossover as a function of r corresponds to the crossover from the
critical (Hubbard—Wegner) shape to the hydrodynamic shape as discussed in section
2. (Note that, for gp¢ < 1, the scaling variable r reduces to x = 1/g&.) Figures 3.9
and 3.10 show the shape crossover for gpé = 3-52 (¢ = 1-294) for the transverse and
longitudinal relaxation functions respectively. Figures 3.11 and 3.12 display the
corresponding crossovers for gpé =146 (¢ =0-97). In the latter case the shape
crossover of the transverse and longitudinal relaxation functions are already quite
similar and almost identical with the shape crossover found for the isotropic Heisenberg
ferromagnet without dipolar interaction. The various crossover scenarios can also be
read off figure 3.8.

Finally let us add a comment on how the line-shape crossover affects the linewidth
crossover. It has been shown (Frey et al. 1988, 1989) (see section 4) that there are only
slight changes in the linewidth crossover, when the linewidth is determined from the
full solution of the mode-coupling equations, compared with the widths obtained from
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the Lorentzian approximation. Roughly speaking, the overall effect of taking into
account the correct line shape is approximately a shift by a constant factor. For details
we refer the reader to section 4.

3.3. Spin-wave theory in the ferromagnetic phase
Holstein and Primakoff (1940) have investigated the dynamics of dipolar
ferromagnets far below 7¢ using linear spin-wave theory. Upon neglecting fluctuations
in the longitudinal component, S}~ S, they obtain the following equations of motion
for the transverse spin fluctuations (see also Lovesey and Trohidou ( 1991)):

d
id—tS; =AwSk +BEST,, (3.50)
. d - +
i3, Sk =AES T+ BuSK, (3.51)

in terms of the raising and lowering operators §;" = S7 + iS7. From these equations of
motion the spin-wave dispersion follows (see also Keffer (1966)):

e = (A + |Bi)"*(Ax — | BK)"2 (3.52)

The coefficients Ax and By are given in terms of the exchange interaction
Jx =282 nJimexp [ik* (x; — x,,)] and the dipolar interaction tensor Aﬁﬁ (see equation

(3.3)):
Ax= gLusHo + (Jo— Ji) + (2Eo + Ey), (3.53)
Ex= SAE, (3.54)
Bi= — S(AY — AY — 2iAR) = S((AF" — AP)? + 4472 exp (— 2ipw).  (3.55)

For crystals with cubic symmetry the dipolar tensor A% is given by
AP ~ UgLpun)*4n (5" — K°kPIK?) near the zone centre ka <1, plus small structure-
dependent terms proportional to k* (see section 3.1)). Note, however, that the dipolar
tensor becomes severely structure dependent (requiring numerical evaluation (Cohen
and Keffer 1955)) as k approaches the zone boundary.

Hence, for ka < 1, one finds for crystals with cubic symmetry (for more details we
refer the reader to the review by Keffer (1966))

12 2
Ak = gL[LBH() + (J() - JK) + %gL,uBMO [47[ — 41 <;) ], (356)

) — iRy . .
By = 1g1usMo [47‘: © K2 = ] = 2mg1upMosin® Oxexp (— 2igpy), (357

where @y and @y define the orientation of the wave-vector k with respect to the z axis;
M, is the saturation magnetization. Note that the latter equations are strictly valid for
long thin samples only. Otherwise, one has to take into account demagnetization effects,
which amount in an additional magnetic field Hy— Hy— N°M,, where N% is a
demagnetization factor (Anderson and Suhl 1955, Keffer 1966).

Using the formalism of Holstein and Primakoff (1940) the influence of the
dipole—dipole interaction on the inelastic scattering of neutrons has been investigated
by Elliott and Lowde (1955) (see also Lowde (1965)).

The neutron scattering cross section is proportional to the correlation function
corresponding to the spin fluctuations (for example Lovesey (1984) and Collins (1989)).
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If one considers Nidentical atoms with fixed positions, one finds for the magnetic partial
differential cross-section of unpolarized neutrons in forward direction

d2 KN
10 dGE, = olF(Q)|2 Z exp [iQ - (x; — xp)] f —exp(—lwt) (ST®HSTO))

’

= & - rolF(Q)IZST(Q w), (3.58)

where Sj°(¢) is the component of the spin density perpendicular to the momentum
transfer (scattering vector) Q@ = k—k’, and A® is the neutron energy transfer.
The length ro= —5-391fm is analogous to the nuclear scatiering length (see also
section 4), and F(Q) the magnetic form factor. We have also defined the transverse
magnetic scattering function S7(Q, w) by

5% — Q_aQ_ﬂ
Q2
where Q = q + 7 with q the wave-vector of the magnon and t a reciprocal-lattice vector.

The equations of motion (equations (3.50) and (3.51)) are diagonalized in terms of
the Bose operators a and a' that satisfy

[ag, al] = 8qq (3.60)

sSTQ,w)= ( ) f 2; exp (— iwt) (S*4(OSEO)), (3.59)

with
St =uqaq + van_q. (3.61)
A convenient choice for the coefficients uq and vq is (Keffer 1966, Lovesey and
Trohidou 1991)t
2 2SN(Aq+&g)
Ug=——
2¢&q
ugBh
Vg= — - ———.
(Aq +&g)

(3.62)

(3.63)
The contributions from single-spin-wave events to the dynamic structure factor was
calculated by Elliott and Lowde (1955) and Lowde (1965):
2\2 2
A
(% ) ) ' (1 (g;

B
) [Bal cos [2(pq — q’q)]:l d(w + &),
(3.64)

ST(Q, w) =§(nq + 1)[(1

where ng is the occupation number of the magnon oscillator with wave-vector q.
The second term in the dynamic structure factor is due to the dipolar interaction.
For zero dipolar interaction or for wave-vectors larger than the dipolar wave-vector gp
the dynamic structure factor reduces to a simple angular distribution proportional to
1+ (Q¥Q)*. When dipolar effects become of importance, the angular dependence of
the scattered intensity becomes quite complicated.

More recently Lovesey and Trohidou (1991) and Trohidou and Lovesey (1993)
have extended Lowde’s analysis to scattering of polarized neutrons, and a discussion

t Holstein and Primakoff (1940) have ignored the phase relationship between ug and vq,
without which an incorrect expression for the scattering cross-section between spin waves and
neutrons would be obtained. This error has been corrected by Elliott and Lowde (1955), Lowde
(1965) and Keffer (1966).
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of the longitudinal cross-section (S7S7), which contains two-spin-wave scattering
events. Furthermore, they analyse the static susceptibilities in the framework of linear
spin-wave theory, correcting work by Toh and Gehring (1990) who used the incorrect
expressions for the coefficients uq and vq from the work of Holstein and Primakoff
(1940).

As a first step beyond the spin-wave theories described above, Toperverg and
Yashenkin {1993) have used the perturbation approach developed by Vaks er al.
(1967a,b) to investigate the frequency dependence of the uniform transverse and
longitudinal susceptibilities.t The applicability of their results is mainly restricted to
low and intermediate temperatures. Their perturbation approach for the dipolar
interaction breaks down not only close to the critical temperature but also at any
temperature for low frequencies. For this parameter regime a non-perturbative approach
such as mode-coupling theory is needed to account for the strong fluctuations. A first
attempt towards such a theory was made some time ago by Raghavan and Huber (1976).
There are, however, several shortcomings in their approach. First of all, the static
susceptibilities used in their analysis do not account for the coexistence anomalies and
dipolar crossover properly. Instead the longitudinal susceptibility is taken to be of
Ornstein-Zernike form y" o« 1/(q* + £~?), which neglects dipolar crossover effects as
well as the by now well known coexistence anomaly y“ o 1/g in the limit ¢ — 0. The
expression used for the transverse susceptibility is valid in certain limits only.
Furthermore, in the presence of dipolar interaction, for a general angle between the
wave-vector and the direction of the spontaneous magentization, there are three and not
just two non-degenerate eigenvalues for the static susceptibility matrix. This fact has
been neglected completely. Also, they did not evaluate the complete functional form
of the relaxation functions but used instead a parametrization, which is strictly valid
in the hydrodynamic regime only, and calculated the corresponding parameters.
Nevertheless, the theory seems to give a quite reasonable description of the data
obtained by a neutron scattering study on EuO (Passell ez al. 1972) in the ranges g€ < 1
and gp¢ =<1 for not too small values of the wave-vector q. Beyond this range the
approximate treatment of the dipolar interaction by Raghaven and Huber (1976) breaks
down.

More recently Lovesey (1993) reported an approximate mode-coupling approach
for dipolar ferromagnets below Tc. Similar to Raghavan and Huber the spin-wave
dispersion relation used by Lovesey is applicable for not too small wave-vectors only.
The analysis by Lovesey (1993) is restricted to the exchange region gpé < 1. This is
due to the assumption made by Lovesey (1993) that the only non-vanishing relaxation
kernels are those for the spin fluctuations longitudinal and transverse to the direction
of the spontaneous magnetization. Neglecting off-diagonal matrix elements excludes
the applicability of the theory to the dipolar region. Note that in the dipolar region close
to T¢ the memory function and the relaxation functions become, similar to the situation
above T¢, diagonal in terms of the spin fluctuations longitudinal and transverse with
respect to the wave-vector and not to the spontaneous magnetization. Furthermore, the
analysis by Lovesey (1993) is restricted to very small wave-vectors. In this limit,
however, the expressions for the static susceptibility and the spin-wave dispersion
relation used by Lovesey (1993) are not valid, since they do not account for the presence

T An excellent review on the theoretical and experimental work prior to 1984 has been given
by Maleev (1987) with a particular emphasis on Green function techniques.
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of the subtle combined effects of Goldstone modes and dipolar anisotropy. Also, no
self-consistent solution but only a first iteration of the mode-coupling equations, based
on neglecting the damping, is performed. In summary, a thorough mode-coupling
analysis of the effects of the dipolar interactions in the ferromagnetic phase is still a
very challenging theoretical problem and the topic of ongoing research (Schinz 1994a).

3.4. Renormalization group theory of time-dependent Ginzburg—Landau models in the
ferromagnetic phase

The spin-wave theory, reviewed in the preceding section, is only a first step towards
a more rigorous theory of the critical dynamics of dipolar ferromagnets below the Curie
temperature. For a thorough understanding of the dynamics in the ferromagnetic phase
a renormalization group theory or a mode-coupling approach analogous to section 3.2,
which takes into account the effects of the critical fluctuations, would be necessary.
A detailed analysis requires a treatment of a modified model J (Hohenberg and Halperin
1977) appropriate for the dynamics of isotropic ferromagnets, where dipolar forces are
included.

Recently, the effects of the dipolar interaction on the critical dynamics of the
n-component time-dependent Ginzburg-Landau models (model A (Hohenberg and
Halperin 1977)) below the critical temperature have been studied within a generalized
minimal subtraction scheme (T4duber and Schwabl 1993). The corresponding Langevin
equation of motion reads (model A, a = 0; Model B, a =2)

oS o SHI(S)]
o - MV s

+{(x, 9, (3.65)

where the stochastic forces are characterized by a Gaussian probability distribution
function with zero mean and variance:

{Cx, (', 1)y = 2 ks T(AV) 8P (x — x")3(t — t')8*. (3.66)

The Ginzburg-Landau effective free-energy functional reads

min (d, n)
HI($*}] =5 f ( ﬁE [(r+ P+ (r + g + PSS (— q)
q ‘a,f=1

+ > wmm%—m) (3.67)
a=min(d,n)+ 1

where the general situation n+#d is considered. Here Plz=8—g%¢flq* and

Pﬁﬂ = ¢*q®/q” denote the transverse and longitudinal projection operators respectively.

Those relaxational models neglect mode-coupling terms resulting from the
reversible motion of the spins in the local magnetic field. It is expected (Tduber and
Schwabl 1993), however, that most of the conclusions based on the relaxational models
will also hold for models with mode-coupling terms.

As a consequence of the spontaneously broken symmetry there are n — 1 massless
Goldstone modes in the ordered phase of ideally isotropic systems. These massless
modes lead to infrared singularities (coexistence singularities) in certain correlation
functions for all temperatures below T¢. Based on the analysis of the effects of the
critical and Goldstone fluctuations for the O(n)-symmetric time-dependent Ginzburg—
Landau models (Tauber and Schwabl 1992), it has been investigated (Tduber and
Schwabl 1993) how the coexistence anomalies are modified when dipolar forces or
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Table 6. Coexistence anomalies of the isotropic relaxational models for the longitudinal
dynamic susceptibility y'(q, @) and correlation function Gi(q, ®).

Model a £(q.,0) Re[¥(0, w/g®)] GL(0, w/g®)
A 0 och—4 o pld— D2 o 23
B 2 och—4 Oc(a)/qz)(d_4)/2 oc(a)/qz)d_4

Table 7. The influence of the dipolar interaction on the coexistence anomalies. The table
summarizes the various cross-over scenarios possible if the number r of components and
the dimensionality d of space is varied.

d=2,d=3 d=4
n=1 Crossover to a Gaussian theory Asforg=0
n=2 Crossover to a Gaussian theory No anomalies
n=3 udp = 6(4 — d)/(n — 2) - anomalies Logarithmic corrections

weak anisotropies are included. For latter reference the coexistence anomalies of the
isotropic relaxational models are collected in table 6.

The analysis by Tduber and Schwabl (1993) shows that the influence of the dipolar
interaction on the coexistence singularities is quite subtle. Although the model explicitly
breaks the O(n) symmetry, not all transverse modes lose their Goldstone character, and
their effective number is only reduced by one. Hence, while for n =2 a crossover to
an asymptotically uncritical theory takes place, for n = 3 coexistence anomalies persist,
governed by a dipolar coexistence fixed point (Tduber and Schwabl 1993).

Below T¢ there are two preferred axes: the axis defined by the direction of the
spontaneous magnetization and the axis defined by the wave-vector q. This leads to a
complex structure of the correlation functions already on the harmonic level. It is quite
remarkable, however, that a one-loop theory for the two-point cumulants becomes an
exact representation in the ordered phase in the coexistence limit (q— 0 and v —0)
(T4uber and Schwabl 1993).

For n=d=3 it is found (Tduber and Schwabl 1993) that the power laws
characteristic of the coexistence anomalies are not changed by the presence of the
dipolar interaction. Hence the same power laws in table 6 apply to the dipolar case also.
It is also interesting to note that there is the following exact amplitudes ratio of the
longitudinal response function in the dipolar and the isotropic case:

XL(CI, C‘))dipo]ar - n—2
XL(q, w)isotropic n—1’

(3.68)

For n = 3 this universal amplitude ratio is 4, in accord with the results of Pokrovsky
(1979) and Toh and Gehring (1990), obtained in the framework of a spin-wave theory.

As is apparent from the value of the dipolar coexistence fixed point
up = 6(4 — d)/(n — 2), the situation n =2 requires separate discussion. In this case
there are no massless modes left, since the dipolar interaction reduces the number of
Goldstone modes from n — 1 to n — 2. As a consequence the crossover below Tc is from
a critical theory at T¢ to a Gaussian theory, that is the fluctuations die out on leaving
the critical region. A qualitative summary of the various crossover scenarios is given
in table 7 (Tduber and Schwabl 1993).
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4. Application to experiments

In this section we review the results from the numerical solution of the
mode-coupling equations for dipolar ferromagnets above the transition temperature and
compare them with experiments. Furthermore we give a short account of the
experimental data recorded below T¢ and future theoretical developments.

There are several experimental techniques such as neutron scattering, electron spin
resonance, magnetic relaxation, hyperfine interaction and muon spin resonance with
various complementary characteristics: different wave-vector ranges, short-range
point-like probes in real space (hyperfine interaction and muon spin resonance) against
probes in reciprocal space (neutron scattering, electron spin resonance and magnetic
relaxation). The critical dynamics of isotropic ferromagnets such as EuO, EuS, Fe, Ni
and many other materials have been studied by one or several of the above methods.

To emphasize the decisive role of the dipolar interaction we note that the
experimental situation prior to the theoretical work by Frey (1986) and Frey and
Schwabl (1987, 1988a, 1989a) was, however, puzzling in many ways. On the one hand,
in hyperfine interaction experiments on Fe and Ni, one observed a cross-over in the
dynamic critical exponent from z =3 to z =2 (Reno and Hohenemser 1972, Gottlieb
and Hohenemser 1973, Hohenemser et al. 1982, 1989), that is a crossover to a dynamics
with a non-conserved order parameter. This was confirmed by electron spin resonance
and magnetic relaxation experiments (Kétzler er al. 1976, 1978, Kotzler and Scheithe
1978, Kotzler and von Philipsborn 1978, Dunlap and Gottlieb 1980, Kétzler 1988),
where a non-vanishing Onsager coefficient at zero wave-vector was found. These
results indicated that the critical dynamics of isotropic ferromagnets cannot be
explained solely on the basis of the short-range exchange interaction, which would lead
to an exponent =§ for the whole wave-vector range. However, on the other hand, a
critical exponent z = 3 was deduced from the wave-vector dependence of the linewidth
observed in neutron scattering experiments right at the critical temperature by three
different experimental groups: by Collins et al. (1969) and Dietrich et al. (1976); by
Mezei (1982a,b, 1984, 1986, 1987, 1988); by Wicksted ef al. (1984), Boni and Shirane
(1986) and Boni ef al. (1984a,b). Nevertheless and even more puzzling, the data for
the linewidths above the transition temperature (Mezei 1982a, b, 1984, Boni et al. 1988)
could not be described by the Résibois—Piette scaling function resulting from a
mode-coupling theory (Résibois and Piette 1970) and a renormalization group theory
(Ma and Mazenko 1975, Iro 1987), which take into account the short-range exchange
interaction only (see section 2).

Those apparent experi