53 research outputs found

    Analysis of LhcSR3, a Protein Essential for Feedback De-Excitation in the Green Alga Chlamydomonas reinhardtii

    Get PDF
    To prevent photodamage by excess light, plants use different proteins to sense pH changes and to dissipate excited energy states. In green microalgae, however, the LhcSR3 gene product is able to perform both pH sensing and energy quenching functions

    Cardiopoietic cell therapy for advanced ischemic heart failure: results at 39 weeks of the prospective, randomized, double blind, sham-controlled CHART-1 clinical trial

    Get PDF
    Cardiopoietic cells, produced through cardiogenic conditioning of patients' mesenchymal stem cells, have shown preliminary efficacy. The Congestive Heart Failure Cardiopoietic Regenerative Therapy (CHART-1) trial aimed to validate cardiopoiesis-based biotherapy in a larger heart failure cohort

    Investigating the role of ePortfolios and online courses in a community of practice: Assisting Bulgarian special educators with lifelong competency development

    Get PDF
    Research and development for an Internet-facilitated distributed community of practice (DCoP) for special education in Bulgaria is in its final phase. The DCoP is called Special Education Bulgaria. Results from the needs assessment indicated that special education researchers, practitioners, and parents in Bulgaria would benefit from such a community and that there is sufficient Internet access. Formative evaluation results directed website usability and sociability improvements and the incorporation of Moodle, a popular course management system. An effectiveness evaluation is currently underway to investigate the DCoP’s effect on the job performance and satisfaction of special educators. Preliminary results indicate that though a DCoP has begun to coalesce, it may remain unclear if it helps special educators do their jobs better. Partnership with the European Union 6th Framework integrated project, TENCompetence, may help address this finding. The expected outcomes of such a partnership include the implementation and testing of ePortfolios and online courses to assist Bulgarian special educators with lifelong competency development

    Determination of Configuration and Conformation of a Reserpine Derivative with Seven Stereogenic Centers Using Molecular Dynamics with RDC‐Derived Tensorial Constraints**

    No full text
    NMR-based determination of the configuration of complex molecules containing many stereocenters is often not possible using traditional NOE data and coupling patterns. Making use of residual dipolar couplings (RDCs), we were able to determine the relative configuration of a natural product containing seven stereocenters, including a chiral amine lacking direct RDC data. To identify the correct relative configuration out of 32 possible ones, experimental RDCs were used in three different approaches for data interpretation: by fitting experimental data based singular value decomposition (SVD) using a single alignment tensor and either (i) a single conformer or (ii) multiple conformers, or alternatively (iii) using molecular dynamics simulations with tensorial orientational constraints (MDOC). Even though in all three approaches one and the same configuration could be selected and clear discrimination between possible configurations was achieved, the experimental data was not fully satisfied by the methods based on single tensor approaches. While these two approaches are faster, only MDOC is able to fully reproduce experimental results, as the obtained conformational ensemble adequately covers the conformational space necessary to describe the molecule with inherent flexibility.ISSN:0947-6539ISSN:1521-376

    Formation of a polymer surface with a gradient of pore size using a microfluidic chip

    No full text
    Here we demonstrate the generation of polymer monolithic surfaces possessing a gradient of pore and polymer globule sizes from ∼0.1 to ∼0.5 μm defined by the composition of two polymerization mixtures injected into a microfluidic chip. To generate the gradient, we used a PDMS microfluidic chip with a cascade micromixer with a subsequent reaction chamber for the formation of a continuous gradient film. The micromixer has zigzag channels of 400 × 680 μm2 cross section and six cascades. The chip was used with a reversible bonding connection, realized by curing agent coating. After polymerization in the microfluidic chip the reversible bond was opened, resulting in a 450 μm thick polymer film possessing the pore size gradient. The gradient formation in the microfluidic reaction chamber was studied using microscopic laser-induced fluorescence (μLIF) and different model fluids. Formation of linear gradients was shown using the fluids of the same density by both diffusive mixing at flow rates of 0.001 mL/min and in a convective mixing regime at flow rates of 20 mL/min. By using different density fluids, formation of a two-dimensional wedge-like gradient controlled by the density difference and orientation of the microfluidic chip was observed. © 2013 American Chemical Society

    LIL3, a light-harvesting-like protein, plays an essential role in chlorophyll and tocopherol biosynthesis

    Get PDF
    The light-harvesting chlorophyll-binding (LHC) proteins are major constituents of eukaryotic photosynthetic machinery. In plants, six different groups of proteins, LHC-like proteins, share a conserved motif with LHC. Although the evolution of LHC and LHC-like proteins is proposed to be a key for the diversification of modern photosynthetic eukaryotes, our knowledge of the evolution and functions of LHC-like proteins is still limited. In this study, we aimed to understand specifically the function of one type of LHC-like proteins, LIL3 proteins, by analyzing Arabidopsis mutants lacking them. The Arabidopsis genome contains two gene copies for LIL3, LIL3:1 and LIL3:2. In the lil3:1/lil3:2 double mutant, the majority of chlorophyll molecules are conjugated with an unsaturated geranylgeraniol side chain. This mutant is also deficient in α-tocopherol. These results indicate that reduction of both the geranylgeraniol side chain of chlorophyll and geranylgeranyl pyrophosphate, which is also an essential intermediate of tocopherol biosynthesis, is compromised in the lil3 mutants. We found that the content of geranylgeranyl reductase responsible for these reactions was severely reduced in the lil3 double mutant, whereas the mRNA level for this enzyme was not significantly changed. We demonstrated an interaction of geranylgeranyl reductase with both LIL3 isoforms by using a split ubiquitin assay, bimolecular fluorescence complementation, and combined blue-native and SDS polyacrylamide gel electrophoresis. We propose that LIL3 is functionally involved in chlorophyll and tocopherol biosynthesis by stabilizing geranylgeranyl reductase

    Small-molecule control of antibody N-glycosylation in engineered mammalian cells

    No full text
    N-linked glycosylation in monoclonal antibodies (mAbs) is crucial for structural and functional properties of mAb therapeutics, including stability, pharmacokinetics, safety and clinical efficacy. The biopharmaceutical industry currently lacks tools to precisely control N-glycosylation levels during mAb production. In this study, we engineered Chinese hamster ovary cells with synthetic genetic circuits to tune N-glycosylation of a stably expressed IgG. We knocked out two key glycosyltransferase genes, α-1,6-fucosyltransferase (FUT8) and β-1,4-galactosyltransferase (β4GALT1), genomically integrated circuits expressing synthetic glycosyltransferase genes under constitutive or inducible promoters and generated antibodies with concurrently desired fucosylation (0–97%) and galactosylation (0–87%) levels. Simultaneous and independent control of FUT8 and β4GALT1 expression was achieved using orthogonal small molecule inducers. Effector function studies confirmed that glycosylation profile changes affected antibody binding to a cell surface receptor. Precise and rational modification of N-glycosylation will allow new recombinant protein therapeutics with tailored in vitro and in vivo effects for various biotechnological and biomedical applications
    corecore