6,369 research outputs found

    Exclusive charm production in pbar p collisions at s^1/2 <15 GeV

    Full text link
    We discuss the open charm production in peripheral reactions pˉpYˉcYc\bar pp\to \bar Y_cY_c and pˉpMcMˉc\bar pp\to M_c\bar M_c, where YcY_c and McM_c stand for Λc+,Σc+\Lambda_c^+,\Sigma_c^+ and D,DD,D^*, respectively, at s15\sqrt{s}\lesssim 15 GeV, which corresponds to the energy range of FAIR. Our consideration is based on the topological decomposition of the planar quark and diquark diagrams which allows to estimate consistently meson and baryon exchange trajectories and energy scale parameters as well. The spin dependence is determined by the effective interaction of lowest exchanged resonance. Unknown parameters are fixed by an independent analysis of open strangeness production in pˉpYˉY\bar pp\to \bar YY and pˉpKˉK\bar pp\to \bar KK reactions and of SU(4) symmetry. We present the corresponding cross sections and longitudinal double-spin asymmetries for exclusive binary reactions with open charm mesons and baryons in the final state. The polarization observables have a non-trivial tt and ss dependence which is sensitive to details of the open charm production mechanism.Comment: 26 pages, 18 figure

    Plasmonic shock waves and solitons in a nanoring

    Get PDF
    We apply the hydrodynamic theory of electron liquid to demonstrate that a circularly polarized radiation induces the diamagnetic, helicity-sensitive dc current in a ballistic nanoring. This current is dramatically enhanced in the vicinity of plasmonic resonances. The resulting magnetic moment of the nanoring represents a giant increase of the inverse Faraday effect. With increasing radiation intensity, linear plasmonic excitations evolve into the strongly non-linear plasma shock waves. These excitations produce a series of the well resolved peaks at the THz frequencies. We demonstrate that the plasmonic wave dispersion transforms the shock waves into solitons. The predicted effects should enable multiple applications in a wide frequency range (from the microwave to terahertz band) using optically controlled ultra low loss electric, photonic and magnetic devices.Comment: 13 pages, 12 figure

    Spin filters with Fano dots

    Get PDF
    We compute the zero bias conductance of electrons through a single ballistic channel weakly coupled to a side quantum dot with Coulomb interaction. In contrast to the standard setup which is designed to measure the transport through the dot, the channel conductance reveals Coulomb blockade dips rather then peaks due to the Fano-like backscattering. At zero temperature the Kondo effect leads to the formation of broad valleys of small conductance corresponding to an odd number of electrons on the dot. By applying a magnetic field in the dot region we find two dips corresponding to a total suppression in the conductance of spins up and down separated by an energy of the order of the Coulomb interaction. This provides a possibility of a perfect spin filter.Comment: 5 pages, 4 figures, to be published in European Physical Journal

    A Model for the Sources of the Slow Solar Wind

    Get PDF
    Models for the origin of the slow solar wind must account for two seemingly contradictory observations: The slow wind has the composition of the closed field corona, implying that it originates from the continuous opening and closing of flux at the boundary between open and closed field. On the other hand, the slow wind also has large angular width, up to ~ 60{\circ}, suggesting that its source extends far from the open-closed boundary. We propose a model that can explain both observations. The key idea is that the source of the slow wind at the Sun is a network of narrow (possibly singular) open-field corridors that map to a web of separatrices and quasi-separatrix layers in the heliosphere. We compute analytically the topology of an open-field corridor and show that it produces a quasi-separatrix layer in the heliosphere that extends to angles far from the heliospheric current sheet. We then use an MHD code and MDI/SOHO observations of the photospheric magnetic field to calculate numerically, with high spatial resolution, the quasi-steady solar wind and magnetic field for a time period preceding the August 1, 2008 total solar eclipse. Our numerical results imply that, at least for this time period, a web of separatrices (which we term an S-web) forms with sufficient density and extent in the heliosphere to account for the observed properties of the slow wind. We discuss the implications of our S-web model for the structure and dynamics of the corona and heliosphere, and propose further tests of the model

    Quantitative assessment of reentrainment in the electrocyclone

    Full text link
    The paper was devoted to the investigation of the reentrainment which was a parasitic effect incipient at the gas-cleaning systems – cyclones. It was demonstrated that the reentrainment arises at the speed of the aerosol from 14 to 27 m/sec. The quantitative characteristics of the reentrainment were determined.The research project has been supported by Russian Foundation for Basic Research (grant 14–08–00046а)

    Proton strangeness form factors in (4,1) clustering configurations

    Full text link
    We reexamine a recent result within a nonrelativistic constituent quark model (NRCQM) which maintains that the uuds\bar s component in the proton has its uuds subsystem in P state, with its \bar s in S state (configuration I). When the result are corrected, contrary to the previous result, we find that all the empirical signs of the form factors data can be described by the lowest-lying uuds\bar s configuration with \bar s in P state that has its uuds subsystem in SS state (configuration II). Further, it is also found that the removal of the center-of-mass (CM) motion of the clusters will enhance the contributions of the transition current considerably. We also show that a reasonable description of the existing form factors data can be obtained with a very small probability P_{s\bar s}=0.025% for the uuds\bar s component. We further see that the agreement of our prediction with the data for G_A^s at low-q^2 region can be markedly improved by a small admixture of configuration I. It is also found that by not removing CM motion, P_{s\bar s} would be overestimated by about a factor of four in the case when transition dominates over direct currents. Then, we also study the consequence of a recent estimate reached from analyzing the existing data on quark distributions that P_{s\bar s} lies between 2.4-2.9% which would lead to a large size for the five-quark (5q) system, as well as a small bump in both G^s_E+\eta G^s_M and G^s_E in the region of q^2 =< 0.1 GeV^2.Comment: Prepared for The Fifth Asia-Pacific Conference on Few-Body Problems in Physics 2011 in Seoul, South Korea, 22-26 August 201

    Inclusive quasi-elastic electron-nucleus scattering

    Full text link
    This article presents a review of the field of inclusive quasi-elastic electron-nucleus scattering. It discusses the approach used to measure the data and includes a compilation of data available in numerical form. The theoretical approaches used to interpret the data are presented. A number of results obtained from the comparison between experiment and calculation are then reviewed. The analogies and differences to other fields of physics exploiting quasi-elastic scattering from composite systems are pointed out.Comment: Accepted for publication in Reviews of Modern Physic

    Configuration interaction calculation of hyperfine and P,T-odd constants on ^{207}PbO excited states for the electron EDM experiments

    Full text link
    We report first configuration interaction calculations of hyperfine constants A_\parallel and the effective electric field W_d acting on the electric dipole moment of the electron, in two excited electronic states of ^{207}PbO. The obtained hyperfine constants, A_\parallel = -3826 MHz for the a(1) state and A_\parallel = 4887 MHz for the B(1) state, are in very good agreement with the experimental data, -4113 MHz and 5000 \pm 200 MHz, respectively. We find W_d = -(6.1 ^{+1.8}_{-0.6}) 10^{24} Hz/(e cm) for a(1), and W_d = (8.0 \pm 1.6) 10^{24} Hz/(e cm) for B(1). The obtained values are analyzed and compared to recent relativistic coupled cluster results and a semiempirical estimate of W_d for the a(1) state.Comment: 6 pages, REVTeX4 style, submitted to Pthys.Rev.
    corecore