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We apply the hydrodynamic theory of electron liquid to destaate that a circularly polarized radiation in-
duces the diamagnetic, helicity-sensitilecurrent in a ballistic nanoring. This current is dramaticehhanced
in the vicinity of plasmonic resonances. The resulting nedignmoment of the nanoring represents a giant in-
crease of the inverse Faraday effect. With increasing tiadiantensity, linear plasmonic excitations evolve into
the strongly non-linear plasma shock waves. These exaisproduce a series of the well resolved peaks at the
THz frequencies. We demonstrate that the plasmonic wapedi®n transforms the shock waves into solitons.
The predicted effects should enable multiple applicationa wide frequency range (from the microwave to
terahertz band) using optically controlled ultra low lokctic, photonic and magnetic devices.

PACS numbers: 78.20.Ls, 78.67.-n, 73.23.-b, 75.75.-c

. INTRODUCTION [38-42] in a good agreement with the thedryl [43-46]. More-
over, THz emission from grating gate structures have been

The feature size of modern electronic and photonic device&/SO recently reported [47.148]. . o
has dropped down to 10 nm. At such scales plasmonic excita- Having a non-zerdc photovoltaic response in a single FET
tions become a salient feature determining the device perforequires an inversion asymmetry which may be created by
mance. This explains a recent surge of interest to plasraoni®oundary conditions [25]. Plasmonic crystals would reguir
[1-171, the field which has to be further explored from the fun-an inversion asymmetry within the unit cell of a crystal. Buc
damental physics point of viewl[7]. an asymmetry can be induced by a ratchet effect (see .the re-
Much of plasmonic physics can be captured by the hydroYi€W paper|[49] and the references therein). The lattersi al
dynamic approach that is becoming increasingly relevant foStrongly enhanced by plasmons|[50].
electronic and spintronic devices due to fast improving-qua Here we explore another system enabling a greatly en-
ity of nanostructures. The first theories and measurementi@nced coupling between THz radiation and plasmonic exci-
of the hydrodynamic effects on charge transport date to théations — a ballistic nanoring. Such a system has a number of
early work by Gurzhil[8] and by Jong and Molenkamp [9]. advantages compared to a single FET. First of all, an inversi
In recent years the field received a revived attention driver@Symmetry is not required in this case because of the naporin
by the development of high-mobility nanostructuried [1G—18 multi-connected geometry [5158] .
and graphen&i@ﬂ where the electron-electron caflisio  More importantly, we now predict that the plasmonic res-
dominated transport regime can be reached. onances in a high-quality nanoring can be much sharper as
The interest to non-linear plasmon waves has been stimgompared to a FET. Indeed, the dissipation in contacts and
lated in early 90s by exploring the analogy between the “shalthe coupling to ungated regions in the FET leads to essential
low water” hydrodynamics and that of the electron liquid in Weakening of plasmonic resonances. In a nanoring these dele
two-dimensional (2D) gated systems. It was shown that théerious effects may be fully avoided while the coupling can b
electron liquid in these systems could become unstable witfurther enhanced by fabricating arrays of identical namgsi
respect to the excitations of tunable plasma oscillati@8§. [ In Fig.[1 we illustrate possible realizations of nanoringd a
Many other beautiful hydrodynamic phenomena such as chokianoring arrays. A quasi-onedimensional (1D) ring can be
ing of electron flow [[26], nonlinear rectification of plasma fabricated from 2D or 3D metals or semiconductors as shown
waves [27[ 28] and formation of plasmonic shock walek [29]n Figs[d&:lLb, respectively. The arrays of nanorings mdde o
have been subsequently proposed. Possible applications fese materials are depicted schematically in Eigkl 1c-1d .
these phenomena to plasma-wave electronics were intenselyPlasmonic excitations in both 2D and 3D types of nanor-
discussed (see the reviews|[80] 31]). In particular, mueh atings are nearly identical due to similar electrostatic jertips
tention has been paid recently to the generation of plastoniof these quasi-1D systems. Still, it is much easier to preduc
oscillations in the field-effect transistors (FETs) forlisag  clean rings made of 2D semiconductor materials. Such rings
tunable THz emitters or detectofs[30] 31]. can be fabricated with the use of standard semiconductor tec
The detector responsivity is enhanced dramatically in theology: by growing a narrow 2D semiconductor on a substrate
presence ofic current [32]. It can be also enhanced by mak-followed by patterning a nanoring or an array of nanorings.
ing artificial periodic structures such as FET arrays and per One can also use a gate electrode (or an array of gate elec-
odically grated gates$ [B3-37]. Such plasmonic crystalghavtrodes) to control electron concentration in the nanoring.
already demonstrated excellent performance as THz detecto Below we demonstrate that sharp plasmonic resonances can
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(a) (b) phenomenon.

We would like to stress that the closed rings, we consider,
have an important advantage as compared to the ring-split re
onators (see Refl_[69] and reference therein). The latter ca
create large values of optically inducaldernating magnetic
field but can not conduct circulatinde current, and, conse-
guently, do not produce@nstant magnetic field. In contrast,
excitation of a closed ring by a circularly polarized raaiat
may produce a sizable constant magnetic field (of the order
of a Gauss for a single nanoring). Similar phenomena should

(d) occur in metallic films perforated with hole arrays|[64].

IIl. MODEL

In this paper, we discuss excitations of plasmonic reso-
nances in a single nanoring. Generalization for the case of
ring array is straightforward. We consider two basic setips
a nanoring of the radiu® made of 3D wire with a diameter
2a (see Fig la) and ii) a nanoring of the same radius made of
2D strip with the width2a (see FigilLb). We assume that the

FIG. 1: Three dimensional (a) and two-dimensional (b) quant Nanoringsare subject to a circularly polarized electrameig
nanorings. Three-dimensional ring-stacked arrays (c) tavt ra_dlatlon with elec_tncﬂeld parallel to the ring plane. Tradli-
dimensional arrays of rings (d) on a substrate. ation wavelength is assumed to be much larger thaso that

electric field is homogeneous within the ring size. At thesam
time we naturally assume > a > \p, Where)r is the elec-

be excited in semiconductor GaAs or GaN nanorings within 4ron Fermi wavelength. In this case, the ring is multichdnne
wide range of sizes and carrier concentrations assuming rénd can be described quasiclassically, while at the sange tim
alistic values of electron mobility and a reasonable temper it can be considered as a quasi 1D wire from the electrostat-
ture range. Similar effects can be observed in rings made dfS point of view. Under these assumptions, the electrid fiel
graphene and in systems of different geometry such as selfdduced by plasma wave can be expressed in terms of linear
assembled nanorods or nanodisks. The difference in thee latt€l€ctron concentration (concentration per unit lengthpfth
case would only concern somewhat more complex electrostatYPes Of rings. o . .
ics of such systems. Plasmonic resonances take place in high-quality multi-
We predict that excitation of plasmonic waves by circularly channel nanorings where electron-electron collisions idom
polarized radiation leads to a resonant optical rectificagif-  Nat€ Over scattering off phonons and impurities. The latter

fect— a large diamagnetic circulatidg current that manifests condition may be formulated as. < i,, wherer. is the
itself as a magnetic moment of the nanoring. When radi(,;l_electron—electron collision time, whilg, stands for the trans-

tion intensity exceeds a critical value, the plasmonic wave PO't Scattering time. The condition ensures the validitshef

transform into shock waves (SW) that might further develoghydrodynamic approach. - o
into multiple solitons (a similar effect was recently preeéd The hydrodynamic equations, describing electron liquid in

for nonlinear waves in the Luttinger liquid [59.]60]). Inghi & multi-channel nanoring, can be derived in a standard way
regime, the system is functioning as an efficient emitter of /O™ Kinetic equation assuming that the electron distidout
high frequency radiation harmonics. One possible apjitinat function depends only on hydrodynamic parameters, i.e. on

of the plasmonic SWis is to transform circularly polarizestre the local electron density, local velocity and local tengpere.

onant GHz waves into a number of well resolved peaks at THZ "€ derivation (for the case of 2D systems) can be found, e. g.
frequencies. in Ref. [50]. Neglecting heating effects (see. Refl [50])an

Circulating current in a nanoring gives rise to the inverse'meqraltlng the hydrodynamic equations derived in Ref] [50

Faraday effect (IFE), which is the excitation of helicity- over the ring cross-section, one arrives at the hydrodyoami

sensitive magnetic moment by a circularly polarized gt} equations for the linear electron concentratiérand the hy-

[64]. The IFE has been widely discussed in connection withdr()dyn""m'C velocit,

ultrafast magnetization dynamics [63+-66]. The phenomenon gn 9 (NV)

is closely related to the quantum IFE in nanoringd [51-58] -+ —5.— =0, (1)

and in a chaotic cavity [67] as well as to the optical analog of oV oV 92V 0D  ¢E

Aharonov-Bohm effect for excitons in a semiconductor quan- o + Va— gz = -V - e + _50 sinf, (2)
X X X ™m.

tum ring [68]. Remarkably, the plasmonic IFE described be-
low is based on quasiclassical mechanism and, consequentiyherez is the coordinate along the rindy, is the amplitude
orders of magnitude stronger than the corresponding qoantuandw is the frequency of circularly polarized radiatiopjs



the kinematic viscosity of electron liquidh is the effective Ill. LINEAR REGIME
electron massy = 1/7, is the friction due to scattering off

impurities and phonons, is the dielectric constant, and the  \when the radiation intensity is small, the EqS[11,2) can be

angled is defined as linearized. In the absence of radiation and o= v = 0,
lasma waves propagating in a ring have simple linear spec-
0 =z/R— wt. ) Frum propagating 9 P P

For a ring made of 3D material, the derivation is fully analo-
gous and yields the same system of equations.

The electrostatics of a thin nanoring is solved by the fol-wheres is given by Eq.[(B) [here we neglect the small disper-
lowing potential (see AppendixA) sion due to the second term in the square brackets ifEq. (4) ].
The wave vectors are quantized:
2 2 2 92
_ e 20NN _ 2|, F0n
(I)_ms (N=No)A+d 6x2}_8 {n—i_A(?a:Q . 4

w(k) = sk, (7)

kn, =n/R, (8)

whereA = In(d?/a?), Ny is the linear (1D) charge concen- wheren is the integer numbemn(# 0). Finite friction~ and
tration in equilibrium is the screening radius (< d < R), viscosity n would lead to damping of plasma waves that is
similar to damping effects in FE 5].
n = (N —No)/No (5) A weak external radiation field impinging on the ring cou-
ples to the electronic fluid and excites linear plasmonidl-osc
lations with the fundamental frequency

2
5= 4 ENoA (6) g = =2 | me?Ansp 9)
me "R RV me

is the plasma wave velocity, which might be tunable by th
gate voltage.

Two possible experimental realizations of the nanoring dis
cussed above give rise @, = ma’nsp for 3D wire and
Ny = 2ansp for 2D wire, wherensp (n2p) is the equilibrium Iae = e(NV) (10)
value of 3D (2D) electron concentration. One should also '
specify the dielectric constant entering E@S. (4) ddd (8. F where the brackets stand for the time average. The direction
rings made of 3D wires; is given by the dielectric constant of of the current is determined by the radiation helicity (elo
the material in which the ring is embedded. For a ring madeve putw > 0):
from 2D strip, sandwiched between two materials having di-
electric constants; ande», the effective dielectric constant is TIic(w) = =Ty (—w). (12)
given bye = (g1 +¢2)/2. For example, for a 2D ungated ring _ N
placed on the surface between vacuum (or air) and substrat¥e now introduce the rescaled quantities
with the dielectric constant; one getg = (¢ + 1)/2.

In Eqg. (4), we neglect the pressure o(f electa(/)n liquid as- J = lac/eNoR, v="V/R, (12)
suming thats is large as compared to the Fermi velocity. x=n/R* = B=uwid’/AwR?, (13)

We also neglect all thermoelectric forces (as compared toh . L .

9 /) thus decoupling EqSX(1) arid (2) from the heat equaI at We_respectlvely refer to as current, velocity, visgoand

tion [50]. Finally, we neglect the dependence)adn N (set- dlsperglon. . . . N

ting (N) ~ 5[No]) and regardV to be smooth on the scale Solw_ng the I|_near|zed equations, we find in the resonance
of d, thus keeping the main logarithmic contribution to the 2PProximation, i.e. f0b = wo — w < wo that

is the relative dimensionless concentration, and

e : . i I
For a circularly polarized radiation, the oscillations aee-
tified to produce thelc circulating current that peaks at the
plasmonic resonant frequencies:

Coulomb potential and the leading correction to it (see Ap- eFo o

pendiXB). The latter describes a weak plasmonic dispersion v=wn = Im , , (14)
The remaining subtlety concerns boundary conditions at the mRe s+ +i(20 - f)

surface of the ring. Frequently used no-slip conditign:= 0, 1 [ eEy\> 1

would result in the Poiseuille flow and, consequently, inla-re J=({nv)= 2 (mRE) (> +7)2+ (26 — B)? ,(15)

tively large resistance caused by viscosity. On the othedha

recent technology allows for fabricating quantum wires andvhere3 ~ wod?/AR? for § < wy. Thus, thedc response
rings of an extremely high quality. This implies that theefri has a Lorentzian shape that peaks at the plasmonic frequency
tion originating at the surface of the ring might be certainl with a small dispersion-induced shjftand is broadened by

too low to drive the ring into the Poiseuille regime. In our disorder and viscosity.

derivation of Eqs.[{1), we fully neglect this boundary-icdd The key condition for observation of sharp plasmonic reso-
friction thus making/N and V' depend only onz. A more  nance is a sufficiently high quality factor. This factor igete
general case of arbitrary strong surface friction is bridfst ~ mined by viscosity, dispersion, and disorder (and/or pnyno
cussed in AppendixIB. scattering. The resonances are sharp providedifyat > 1,
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FIG. 2: Numerical solution of Eqs[],2) showing velocityand ﬁ BO / 0/ g
concentratiom =~ v/w profiles for different values of" (a-d). Solid \ 7 %
and dashed lines in (a,b) correspond to positive and negatgn —
choice in Eq.[(2)F). A" = F., these solutions touch each other (b). 0“8
Critical amplitudeF,, corresponds to a formation of the SW front. =
Panels (c) and (d) illustrate the numerical solutionfor> F, that g
experiences a jump between positive and negative brantiesn0 1
solutions of Eq.[(27) are indicated with the dashed linekp fFanels

=
Y

(e) and (f) show the dependence of the currérind the dissipated
power P on F for 8 = 0 andsc — 0.

) I\N f)
wo/B > 1, andwor,, > 1. Since the plasma wave fre-

max
guencyw, decreases with the ring radiug the conditions x
above yield the upper bound fdt. The low bound for the 0(1/\/—
ring radius (at fixed raticR/a) is determined by the Fermi-
wave length since the ring has to support a large number of
guantum channels. (In a single channel ring one should take
into account Luttinger liquid effects, but the qualitatipee-

dictions of our theory will be still valid. A more formal aral VF B

ysis of the Luttinger liquid rings may be developed along the

lines of Refs.[[59, €0].) In Se€lv, we demonstrate that allF|G. 3: Evolution of the solution of Eq4{1,2) that demoatsts the
three parameters, />, wo /3, andwo i, Might be simultane-  emergence of solitons at the SW front with increasing disiparco-
ously large (of the order of0 = 100) for realistic semicon- efficient3 at F > F., ands < VF: (a) 8 < fo, (0) 8 = Bo, (c)

ductor rings with a large number of quantum channels. B ~ 3, (d) 5¢/5T > 8 > ». The number of soliton& as a phase
diagram in the dispersion-viscosity plane (e) and the dépece of
N on the dispersion parametgr(f).

IV.  NONLINEAR REGIME
(n) = 0, where the angular brackets now stand for the av-

For larger radiation intensities, the non-linear terms inéraging over the angle In this case, the EdLi(2) imposes the

Eqgs. [AL2) become increasingly important. Higs. 2[adnd 3 shofgonstraint

the results of the numerical analysis of E¢d](1,2) using a fi-

nite element method (see Appenflik C). We find that, at suf- {v) =0. (16)
ficiently long times, the solution is stationary in the ratgt

reference frame. No chaotic or turbulent behavior is olein One may integrate the Ed.l(1) with the help of the constraint
The results obtained numerically at long times can be reproto obtain

duced analytically by analyzing the automodel solutionthwi

n = n(f), v = v(f) that satisfy the neutrality condition J=—-wn+ (1+n)v. (17)
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For sufficiently small velocities; < w, one finds the charge whereg(7) stands for a position of extremum of the dynamic

density potential
n=(J-v)/(v-w) Hvjwt v w? — Jjw,  (18) 0 = U(q) + Facost = ¢*/3 — i2q. 28)
which is substituted into Ed.J(1) to obtain a useful equation Since(q) = 4, the choice of the right solution is fixed by the
9 3 9 920 oE sign of 5. To be specific we let > 0 below. Upon angle
— 206+ 202 —s—— + B==| =0+ 9 ging. (19) averaging the dependencegfon F' andd is given implicitly
00 2 00 06? mRe by

that holds in the resonant approximation. The electricentrr

J is found from the solution of Eq_(19) as 5= / ;Z—T, /g3 — F cosT. (29)
7T

J = (nv) = (v*) /w. (20) : . .
This equation has a solution only fér < F.,, where
Since both the viscosity and disorder suppress resonant be-

havior in a similar fashion [see Ed._{15)], we consider, for Fo = m°0%/8. (30)
simplicity, the casey = 0. (Importantly, the limity — 0 ) o ) _

should be taken with care, since any small but finitguar- ~ The linear regime is reproduced in the linfit < F, (see
antees the constraitit) = 0 that follows immediately from AppendiXD1). The corresponding solution fe®) is shown
averaging Eq[{19) over the angle In what follows we ne- Py @ solid line in Eld:l;a. The dashed line corresponds to the
glect the termyo in Eq. [I9) but respect the constraint.) We choice of minus sign in EqL(R7). Fdt > F., the result of

integrate Eq.{I9) over the angle and introduce the varsable Ed- (29) breaks down and the velocity profile is discontiraiou
(detailed calculation is relegated to AppendixID 1), i. etegps

q=3v/2+4+6, F =3eEy/2mRe (21)  (SW front) appears at a certain point= 7. The amplitude
of the step is given b4y (), where

to find
Bi+sj=q —q— Fcost, (r=—0) 22) cos(10/2) =V Fr/F, qo(10) = V2(F — Fer).  (31)
where Note that the amplitude of the SW front increases
monotonously withF and is given byv/8F in the limit
@ = (¢*) (23) F > F.. In this limit, the front is located at, ~ = (see
Fig.[2d).

is the integration constant, which has to be found self-

consistently, andy = dgq/dr. The Eq.[(2R) coincides with

the Newton equation of motion for a particle with the "mass” A. Finite viscosity
[ oscillating in a classical cubic potential

Ulg) = ¢/3 — i2q (24) Let us now switch to the case of a finite viscosity while
still assuming that3 = 0. Viscosity tends to regularize the
under the action of both the external dynamic forcE cos  discontinuity in the solution in such a way that the SW front
and the ™friction force”—s¢. The motion is further con- is smeared out on a finite time scale
strained by two conditions,

0T = 2/2qo(70) ~ »/\/F — Fy,. (32)
q(r) = a(7+2m), (25)
(q) = 6. (26)  The corresponding motion in the effective potential issilu

trated in the Fid.Ma. During the time interv&t a particle
The potentialU(¢) has two stationary points (see Fifj. 4): propagates from the unstable point to a stable one under the
q = qo (stable minimum) ang = —¢, (unstable maximum) action of the friction force specified in the Ef.122). For-suf
with the corresponding energies given Byq) = —2¢3/3  ficiently small viscosity,ér < 1, one can letF cosT =~
andU(—qo) = 2¢3 /3. For small values of", the particle un-  F cos 1 within the front width. In this limit the Eq.[(22) is
dergoes linear oscillations around the stable point. Edpan  solved exactly with the result
@ — ¢* ~ 2qo(q0 — q) in the r.h.s. of Eq.[{22) and solv-
ing the corresponding linear equation one readily repreduc  (7) = V2(F —F,) tanh {\/M(T_TO)/%} . (33)
Eq. (I3). In this casey ~ 4.

Let us fix at a certain value and increaseto drive the
system into a nonlinear regime. First, we assume that botﬁg
viscosity and dispersion are absent£ g = 0). In this case
the Eqg.[ZR) has two solutions

hich demonstrates that the smeared step is well described b
e SW solution.

A simple analysis in the limitz — 0 yields the electric
currentJ and the dissipated power

(1) = £qo(7), Go(7) =1/a§ — FeosT,  (27) P = e(NVEysin#) (34)



Ul(q) Ul(q) increasing the dispersion coefficieht The solution is illus-
trated in Figd.B(a-d). We see that dispersion leads to a for-
/ mation of solitons on the SW front. This process can again
, , q q be understood by analyzing the mechanical analogy desktribe

—qo 40 —qo do above.
Since 3 is responsible for “inertia” term in EqL(22) it is
(a) (b) responsible for the transformation of a decaying solutsae(

Fig.[4a) into an oscillatory one (see HigJ. 4b). For a finite, bu
FIG. 4: The effective potential (black lines) and soluti¢red lines)  sufficiently smalls (3 < ), the SW front remains sharp so
of Eq. [22) for3 < o and (a) forBo < 8 < 5 (b) for F' > Fe,. that one can still assum@cos 7 ~ F cos 1 within the front
width. Then, the characteristic scales of the problem can be
understood from the analysis of Ef.{22) linearized near the

per unit volume [see Fifl 2(e,f)]. In particular, we find stable point,
22 B0q + #0q + (32/67)dq = 0, (38)
F<la: J= 144wF,,’ P=0, (35) wheredq = ¢ — go(70). By looking for the solution in the
3 form 6q o exp[A7] we find
F>F.: J_9i<F—gf), P=C(F — Fy,)?, (36) ¢ oc expi]
v T A= —(5/2B8)(1 £ /1 - B/Po), (39)
whereC' = 161/2m N, /81x is independent of viscosity. Re- Wheregy = »07/4 < . _ _ _
markably, the current remains finite even fer= v = 0, For 8 < S, we find two exponentially decaying solutions.

which implies that it has a diamagnetic nature. Even mord he slowest decay correspondsite: —1/47. In this solution

interesting, the poweP remains finite above the threshold, the dispersion does not play an essential role as can be seen

F > F,,. In this regime, the energy dissipation occurs at theffom Fig[3a (for simplicity, in Fig.3 we considef > F.,).

front of the SW in the region where the SW width is of the or- We note that finite viscosity broadens the SW front on the

der of x and is proportional tecvd?v /962 o 1/3. Asthere-  scale ofér.

sult the viscosityr drops out from the expression for the total  One can also see that the solitons start to build ugfor

dissipation[[70]. It is worth stressing that the strongqmiing o Indeed, in this case, the exponaracquires an imaginary

result of Eq.[[3B) is essentially non-perturbative. part hence the oscillations appear on top of the smeared wave
When SW does emerge, the behaviorvgf qualitatively front as shown in Fid]3b. (Note that similar effects alsseari

changes. This can be seen directly from the Fourier tramsfor in the Luttinger liquids due to the same reason [59, 60]). For
the case’y < B < s, we find two rapidly oscillating and

v — Z v exp(ind). (37) slowly decaying solutions. The num_ber of oscillations dgri
— the decay from unstable to stable point (the number of s@ito
N) can be estimated as the ratio of imaginary park ¢d its
For F < F,,, the high order harmonics decay exponentiallyreal part that yields
with n aswv,, « exp(—an), wherea x F,, — F atF — F,
(this estimate hold(s witr)1 an exponential precision). BEyact N ~ /B/Bo. (40)
at the threshold, one finds, « 1/n?, while for F > F.;,  The numbetV increases with increasinguntil 3 ~ » (see
the decay of harmonics, is very slow,v,, o« 1/n, which Fig.[3c).
is the consequence of the step-like behavior of the solution Wheng becomes larger thas both solutions do not decay
[see FigdP(c,d)]. This power-law dependence is valid foffor the whole oscillation period of the external foréey + <
n < 1/67. Higher harmonics are exponentially suppresse®r. As the result, the viscosity can be fully neglected in the
due to the finite front width of the SW. Hence, the generationimit 5 > . In this case the transition from unstable point
of SW leads to a large increase of the excited harmonics angp stable one is governed by an adiabatically slow variation
consequently, to power dissipation. the potential. The number of oscillations in this limit cam b
With increasing viscosity: the SW front smears out and estimated as
the non-linear oscillations are fully suppressed. Theefatt

evolve into linear ones foxr > +/F. The exact solution N ~TmA ~ 52/\/ Bfo. (41)
to Eq. [22) for arbitrarye (but 5 = v = 0) is presented in  The result of this equation is illustrated in Hig. 3d. Thislya
AppendiXD2. sis suggests that the maximal value of solitons is achiewed f
» ~ B with
B. Generation of solitons due to the dispersion of plasma Numax ~ /5o 1/\/‘F (42)
velocity Different regimes are summarized in Hijy. 3e in the coordi-

nates(s, 3). The dependence @¥ on 3 is plotted in FigBf.
Let us now assume thdt > F.,. We fix s at sufficiently A more detailed analytical study in the limit > s is pre-
small value (such thatr < 1) and study what happens with sented in AppendiXIE.
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FIG. 5: Dependence of parameteg /7, on the electron concentra-

tion for GaAs and GaN structures with different mobilities. FIG. 7: Dependence of the fundamental plasma frequency @n th

electron concentration for nanorings of different sizes.

s/vp
A wo/% 1
! GaN A 1-GaN,R=10"* cm
175 2- GaAs, R =10"%cm
> 3- GaN, R = 10 %cm
GaAs 125 4- GaAs, R=10"5cm
3
75
1
2 4 6 8 107>
s B - - ———— - - —————
R (107° cm)
0.2 0.4 0.6 0.8 1
FIG. 6: Ratio of the plasma wave velocity to the Fermi velp&itr a 12 9
2D gas as a function of the nanoring radius. nap (10** cm™%)

FIG. 8: Viscosity-related quality factor plasmonic resooa as a
V. DISCUSSION function of electron concentration for the nanorings ofedtént sizes.
Dashed line corresponds to the case= 3, where number of soli-
Let us discuss the application of the model developed to retons in nonlinear regime is maximized. Above this line alhloear
alistic nanorings. The plasmonic resonances predictedeabo Solutions corresponds to multiple solitons (see alsdls). 3
can be observed in 3D and 2D semiconductor and metallic
rings as well as in ring arrays (see Hib.1). In particular, 2D
rings, which are depicted in Fig. 1b, can be fabricated byve restrict ourselves to the ungated case such that theging i
growing the standard 2D semiconductor or graphene layefglaced on the surface between the air and a substrate with a
followed by patterning gated or ungated nanorings or nagori dielectric constant; which is close to the dielectric constant
arrays. The estimates below show that the conditions needest 2D layer. In this case = (e1 + 1)/2. Below we shell use
for observing both linear and nonlinear plasmonic resoeanc ¢ = 6.3 for GaAs rings and = 5 for GaN rings.
can be easily met for a typical semi_conduc_tor at realistic-te The parameter that ensures the validity of the hydrody-
peratures. Let us present the detailed estimates for 2D GaAgymic approach is the ratio of the electron-electron dotiis
anq GaN nanorings. _The main d|f_ference between the_se M&me to the momentum relaxation time, /7, In the hydro-
terlals_|s due to the different effective masses= 0.067 (in dynamic regime (electron collision-dominated) this pag¢en
the units of electron mass) for GaAs amd= 0.2 for GaN. is small. The rough estimate of the collision time is given by
To be more specific let us choose the geometry relations 1) Toe ~ T2 Ep [‘z%]_ Expressing momentum relaxation time
a = R/10, d=R/3. (43) via the_electron_ mobility and Fermi energy via elect_ron con-
centration, we find. /7, ~ meh3nap/(m2T?p). In Fig[s,
for the rings withl0~>cm< R < 10~*cmandlo''cm=2 < we plot this parameter as a function ofp for two values
nep < 10'2cm~2 assuming thal’ = 30°K. For simplicity,  of mobility: x = 10°cm?/V s andy = 5 - 10°cm?/V s.
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1- GaN, R = 10~%cm tio s/vr on the ring size (see Figl 6). It can be seen that for
WoTtr 3 GaAs. R—10-5cm chosen parameters, the conditighvr > 1 is satisfied.
35A 3. GaN, R=10~4 em 1 The dependence of the fundamental plasma frequency on

the electron concentration is shown in Fig.7. In the chosen
interval of the electron concentrations and the ring sittes,
plasmonic frequency is in the terahertz range. Hence, the pr

4- GaAs, R =10"*cm

25 posed ring-based devices are very attractive for possjiple a
2 plications in terahertz electronics and optics.
15 To discuss possible experimental realizations let us estim
3 nanoring quality factors. It follows from the Ed._{13) that i
5 4 a vicinity of the resonance; — wy < wy, the ratiow, /3 is
determined by a geometrical factor,
' 0.2 0.4 0.6 0.8 17 5
M2D (1012 cm_z) % ~ Rd—QA ~ 25, (44)

FIG. 9: Quality factor of plasmonic resonance related toqaimoand  \\here the result of EQ(@3) is taken into account. The viscos
impurity scattering as a function of the electron conceitnafor ity in this regime is estimated as

nanorings of different sizes made of material with the nmigbjl =
10° cm?/Vs. 7 Viree  2m21n2p

"R R T RZmATZ

x

(45)

1- GaAs, R=10"%cm

Egon‘“nea’(V/cm) 2- GaN, R = 10-5cm hence the viscosity-related quality factor turns out todrge

3. GaAs R = 10~%em to the extent that the vis_co.sity QOes not suppress plasfma res
’ 4 nances. Indeed, the solid lines in the Elg. 8 show the visgosi

107 4- GaN,E=10""cm| related quality factow /» as a function of the electron con-
centration for nanorings of different sizes. The dashed lin
corresponds to the case = /3, where the number of soli-
tons V is maximal. Above this line all nonlinear solutions
would correspond to the regime of multiple solitons (see als
Fig.[3e). The shock wave solutions take place in the region
that is well below this line.

In order to demonstrate that momentum relaxation due to
0.1 disorder and phonons does not destroy the plasmonic res-
onances, we plot in Figl9 the corresponding quality factor

A

10°
10°

10

= woTir @s a function of the electron concentration. In this
0.15 020 030 0.50 0.70 1.00 plot we substitute a relatively low value of electron maljli
nop (102 cm™2) u = 10°cm?/Vs. Still, even for such a value, the disorder-

related quality factor remains sufficiently large for tyadic
FIG. 10: Characteristic value of radiation-induced eledield that ~ €lectron concentrations. Since the quality factor is sympl
is determined by the conditioR’ ’ = s (solid lines) and by the proportional to the mobility, the use of samples with higher
conditiony/F = §3 (dashed line) as a function of the electron con- mobility, e.g. x = 5 - 10° cm?/Vs (which is still well be-
centration. For a give the nonlinear regime corresponds to values low the record mobility value for 2D GaAs) would lead to the
of field that is above both the solid and the dashed line. fivefold enhancement in the quality factor as compared to the
numbers presented in Fid. 9. Thus, for realistic parameters
of a semiconductor nanoring, the combined quality factor of
Larger value of the mobility is still well below a record mo- the plasmonic resonance is certainly large enough to make th
bility for 2D Ga As structures at such temperatures. We se@roposed physics plausible.
that the conditiorr.. /7, < 1 is satisfied even for the case of = Before closing the Section let us briefly discuss the condi-
sufficiently low mobility value and the condition./7.: <1  tions that need to be met in order to observe the non-linear
is satisfied for both materials in the whole range of avadabl regime_ Exacﬂy at the resonaneb;é O) the non-linear be-
electron concentration. havior occurs forn/F > {, 3} (see Fig:Be). These condi-
The main advantage of the proposed system is a high ogions can be, respectively, rewritten as
eration speed that is defined by a particularly large value of
the typical plasma wave velocity as compared to electron eEy > 2mRes?/3, (46)
velocity. For rings prepared on the basis of 2D materials, eEy > 2mReB%/3 ~ 2mRe(wy/25)%/3, (47)
the ratio s/vr does not depend on electron concentration,
s/vp = +/e2aAm/(meh?) [here we used EqLJ6)]. Having where we took advantage of the result of the Eql (44). With
in mind Eq. [43), one readily finds the dependence of the rathe help of the Eqs[19.45) we obtain a characteristic fiedd th
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is required to observe the nonlinear regirﬂg?“‘“’“e“. This  the device. We demonstrate that the effect can be observed in

field must larger than the fields at the right hand sides of th@anorings made of 2D semiconductors in the standard range

inequalities[(4l7) and_(47). The non-linear plasmonic excit of electron concentrations and for realistic ring sizes.e Th

tions, i. e. the solitons and the SWs, is, therefore, expeote quality factor of the resonances can be as hightas- 100.

form for £y > E(‘}"“‘l‘“e"”. The amplitude of the exciting wave driving the system into
The r. h.s. of the inequality (#7) is plotted in Aig]l 10 with the non-linear regime is shown to be not too large, of the or-

the solid lines as a function of the electron concentration i der of10 = 10® V/cm. The effects can be easily scaled up by

a nanoring. Similarly, the r.h.s. of the E.{47) is plottad i preparing the arrays of nearly identical nanorings.

the same figure with the dashed line (one can check, indeed, The discovered enhancement of the diamagnetic current by

that in view of the Eq.[(43), the r.h.s. of the Eq._](47) doesplasmonic resonances should enable numerous applicafions

not depend on the ring radiug). Thus, for a givenR, the  ballistic nanorings and nanoring arrays including, butlimot

nonlinear regime takes place for the fielllg that stay above ited to the electric field control of magnetic forces and the

both the solid and the dashed line. new ways to construct highly efficient low-loss switches tha
Let us consider, for example, a GaAs ring with the radiusoperate in a wide range of frequencies from microwave to the

R = 10~*cm (the curve3 in the Fig[ZID). Intersection of upper bound of the THz range.

this curve with the dashed line occurs at the concentration

nip ~ 0.25- 102 cm2. The non-linear regime is, there-

fore, realized for the values df, that are above the dashed Acknowledgments

line, providedn < nj;. In this regimes > s« hence our

theory predicts multiple soliton solutions. We see thatihe We thank I. Gornyi, A. Kimel, A. Mirlin, D. Polyakov, and
responding value oE;°" """ is sufficiently small and can |. Protopopov for stimulating discussions. The work of
be achieved in experiment. M.T. was supported by the EU Network FP7-PEOPLE-2013-

Forn > n3p, the non-linear regime is realized for the values IRSES Grant No 612624 “InterNoM” and by Dutch Science
of Ey that are larger than the values given by the curve 3 irFoundation NWO/FOM 13PR3118. The work of K.L.K. and
the Fig[I0. In this case] < » hence our theory predicts the V.Yu.K. was supported by Russian Science Foundation (grant
SW solutions as well as solitons developed at the front of theNo. 16-42-01035)
shock wave (see Figl 3e). The vaIueng’“_l‘“e“ in this case
is larger or about the valu)? = 103V/cm (depending on the
electron concentration). Such a value can be easily reanhed Appendix A: Electrostatic potential
modern sources of GHz and THz radiation.

We should also mention that the non-linear regimes dis- \we start by deriving the EJ.X4) of the main text. Let us con-
cussed above is even easier to realize with the pulsed sourggyer electrostatic force (per unit mass) created by eastr
of radiation (the minimum pulse width is only limited by the gjstributed along the ring with the concentratidih= N(z).
period of the electromagnetic wave). Sincedeeurrentand e assume that the Coulomb interaction is screened on the
the induced magnetic moment arise due to rectification of alscgleq such thatl < R. Then, in the limit of infinitely thin
ternating electric field the entire analysis applies tottéime  ire, the force per unit mass acting on the electric flow at the

of operation as well [71]. Thus, even for nanorings made Ohointz can be written as-9®/dz, where
GaAs of smaller radii (see the curve 1 in figl 10), the nonlin-

ear regime can be realized provided that the electron cencen e2 , ,
tration is not too large. o=_— /dﬂ? [N(z") — No]
Finally, we should estimate the magnetic field induced by

the current circulating in the ring. For GaAs ring withp = The integral entering Eq_{A1) diverge logarithmicallyat—

10'2cm=2 andR = 10~° cm subject to radiation withly = ;. This divergency is regularized by taking into account a fi-

10*V/em we find the circulatinglc current that is given by nite widtha (a < d) of the ring. Assuming tha¥ () changes

1.5 uA and the magnetic field in the center of the ring that issjowly on the scal@ we may cast the electron concentration

given by0.1 Gauss. inthe formN (') ~ N (x)+N'(z)(x—z')+(1/2)N" () (x—
2')%. Substituting this equation into EG.(A1) and performing
(with logarithmic precision) the integration ovet we arrive

VI. CONCLUSION at Eq. [4) of the main text.

exp(—lz = #'|/d)

|z — 2|

(A1)

To conclude, we demonstrate that a circularly-polarized ra
diation may induce a strong diamagneticcurrentin a nanor- Appendix B: Linear solution for finite friction at the surfac e
ing, which is dramatically enhanced in the vicinity of plas-
monic resonances. When the amplitude of external field ex- In this section, we briefly discuss the effect of the surface
ceeds a critical valud,.,, shock waves and/or solitons are friction in the linear regime, i. e. for the linear plasmomic
formed. In this regime the current and magnetic moment groveitations.
linearly with the amplitude of the external field and a large The surface friction leads to a inhomogeneous distribution
number of the THz-frequency harmonics can be generated byf the velocity and concentration in the radial directiamthe
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resonance approximation, linearized velocity can be enitt In the next step we substitute ~ v/w into the r.h.s. of

asv = vy (r) exp(if) + h. c., wherev; yields the equation this equation. As a result, we obtain a closed non-statjonar
R” 9 9 5 equation for the velocity
U1 €L
20— — | = . (B1
vli(20 = B) +eta] = (rﬁr) simpe BY R 3 rose +ﬂ LB
ot " 00 vyt Bgs | =0t o sine.

Herer is the radial coordinate such thak r < a. Since our
calculations have illustrative character, we do not dggtish
here between bulk and shear viscosity, characterizingéoe e
tron liquid by a single viscosity coefficient. We further as-
sume that the friction force is proportional to the veloaihd
can be modeled by a delta-function potential on the surface g
the ring,V fo(r — a), wheref is a certain coefficient. In this
model we find the boundary condition to Elg. {B1) as

(C4)

which is easily solved by the standard built-in realizatadn
the finite-element method in Mathematica. For sufficiently
smally and forsc < /F, 8 < +/F we find the solution to be
stationary in the rotating reference frame at sufficientiyg
t|mes This reproduces the results that are shown in [Higs. 2

and3. Also, in the limit3y < 3 < » the numerical simula-
tions yield the values oft ande(, which are in a very good

Ovy agreement with those found analytically [see Eq] (E8) bglow
—| = kv, (B2)
8T r=a
wherek = f/n. For sufficiently large radiug® such that Appendix D: Exact solutions
a?i(26 — B) + » + | /»R* < 1, the solution to Eq[{B1)
with the boundary condition of EJ._(B2) reads 1. Exactsolution atF' < F.. and F' > F., for v = s = 8 = 0.
o~ eBy 1+k(a®>—1?)/2a (83) ) o )
LN R B S +i(26—B) The linear regime is analyzed by expanding EQs| (27) and

(29) in F. Simple analysis yields
wheres = (1 + 2kR?/a). For the limit

F? Fcost
~ ¢ ~— D1
B < o, (B4) HETTEA % (D)
or, equivalently, forf < sa, we restore EqL{14) of the main Substitutings = 2(q — 6)/3 we get
text. Hence, the inequaliti (B4) represents a criteriunmr Feosd
glecting the friction force. For lager values bfthe friction VAR — cos , (D2)
would modify our results. As far as/R? < k < 1/a the 30

modification is simply reduced to replaciagn Eq. (I3) with  that should be compared to EG-{14) of the main textfer
a large constank > . For even larger valueg, > 1/a, x=f=0.

one obtains the dynamical Poiseuille flow in which velocity jth increasing value of" the absolute value af, also
goes to zero on the nanoring surface. increases. Whei reaches the critical poinf = F,, the

value ofqq is given by|qo| = VF = /Fe,. At this point the
positive and the negative solution of EQ.}(27) read

g(r) = £V2F |sin (%)‘ - ig ’5sin (g)’ ., (D3)

while the velocity is given by

Appendix C: Numerical solution of hydrodynamic equations

In this section, we analyze the most general case of non-
stationary hydrodynamic equations in the presence of dispe
sion, viscosity, and disorder-induced friction. In theataig

reference framei( = t andf = ¢ — wt), these equations read 25 9
v=—|=|sin=|—1]), for F=F, (D4)
on 0 3\ 2 2
B +(96’ [(1+n)v—wn] =0, (C1)
o 9 o2 It is evident from Eq.[(DB) that af = F., the positive and

?Jr 59 % vw+win— % +ﬂ = —7v+% sinf, the negative solution touch each other at the paints0 and
t m 7 = 2m. Atthese points one findg = 0 and the positions
(C2)  of extrema coincide, hence there appear a possibility tgjum

For the resonance approximation,< wj, the solution to between the two solutions from the stable point to the uhstab
these equation is very close to a stationary solution ingae r On€- With” increasing aboveé:., the Eq.[29) of the main text
tating reference frame. In the other words, we may assumBC I0nger has any continuous solution. Therefore, for-

that derivative®) /9’ are on the order of and, therefore, are F.., one should search for a solution that is discontinuous:
small compared ta. Then, Eqs{OL) an{T2) can be some-4¢ = —do(7) for 0 < 7 < 7 andg = Go(7) for 7o < 7 <

what simplified. As the first step we rewrite Eg. {C1) as 2m. At the discontinuity point = 7, there exists a jump
from the positive solution to the negative one. The negative
on 1 [@ o1 +n)v]

on n solution changes back to the positive one-at 27 so that
00 ot 00 the periodicity condition is fulfilled.

66’2

(C3)



The discontinuity position is fixed by the conditidp) = §
that is written as

- /OTU drgo(T) + /% drgo(T) = 6.

70

(D5)

Integrating the latter one finds Ef.{31) of the main text.
For F' > F., the velocity reads

_ 2 )V2Fsin(0/2) -4,  0<0 <0, (D6)
3| —V2Fsin(0/2) — 6, 6y <6 < 2,
where the angléd, = —ry obeys the relatioros(6y/2) =

VFe/F.

2. Exact solution fory = 8 = 0 and arbitrary .

In the absence of dispersiofi & 0) the Eq.[22) simplifies
to

sxq=qs —q* — FcosT. (D7)
With the help of new variables
» dy
=71/2 =—= D8
z=T1/2, ¢ 2y d2 (D8)

we rewrite Eq.[(DFF) in the canonical form of the Mathieu

equation
92y
5 + [a — 2@ cos (2<P)]y =0,

wherea = —4(q¢?)/s? andQ = —2F /2.

(D9)

The constraintq) = 0 can be rewritten in terms of the

functiony(z) asy(mw) = exp (2wd/»)y(0). Thus, we get
p(a, Q) = 2ib/, (D10)

11

FIG. 11: Dependence efon T for »x < 5.

Appendix E: Description of solitons in the limit 8 > s

For 5 > s the viscosity can be fully neglected. Let us
consider the electron dynamics assuming for simplicityt tha
0 = 0 and, as a consequendg,. = 0. In this casedr ~
»x/VF andf, ~ »2/\/F. We assume that < /F hence
o1 < 1. If the potentiall/(¢) were static the electron energy
would conserve. In fact, the potential slowly changes due to
the variation ofjy, so that electron undergoes fast oscillations

with the frequency of the order of/\/BBy ~ +/»/B6T ~
F'/4/3'/2 while its energy changes adiabatically.

Let us discuss this process in more detail. First, we con-
sider what happens on the short time scales that are much
shorter than the period of the external force. We introduce a
dimensionless coordinateand the energy: £ = (2¢3/3)e,

q = {oz. Stable and unstable points of the potential cor-
respond toe = —1 ande = 1, respectively. Frequency
of the electron oscillations in the potential dependsecon

w = /2Go/B N(e) where

2m 7 dz 2m e=—1
—— =2 —— ’ ’ El
Q(e) /H(s,z) {—ln(l—a), e— 1L ED

wherey(a, Q) is the Mathieu characteristic exponent. The pa-Here H (e, z) = /2¢/3+z — 2%/3 andz1» = 215(¢) are
rametera is not a free external parameter but, in fact, has tdhe turning points of the potential. The averaged value ef th

be found self-consistently by calculating the average. In-

stead of direct calculation of the average one may simply use

Eq. (DI0), which implicitly defines the dependendé), §).
Following this route one can expregi terms of the solu-
tion of Mathieu equation as follows

y(2) =Gla(Q,9),Q, 2] =
MCos[a(Q,9), @, z] — iMSin[a(Q, 9), @, 2], (D11)

electron coordinate reads),, = Go f(¢), where

e=—1,

fe) =2 T

[ dzH=1(e, 2)

Z1

?dzzH’l(s,z) )
{ B (E2)

and(---), stands for the averaging over the fast oscillations
with the frequencyw(e). Simple numerical analysis shows

whereMCos andMSin are Mathieu cosine and sine, respec-that f(¢) is very well approximated by (s) ~ —1+25/7(1 —
tively. Using Eq.[[DIL) one can readily express the velogity )/

in terms of the anglé as

Next, we study slow dynamics caused by a time dependence
of go. In this case it is useful to define an adiabatic invariant

_ 2 &\ _ 2 _ ) -
o(0) =204 2 OO D 200 (e) = § pdg = J(1)j(e), where (1) = (24/2/5)VFay
(D12) and
The numerical analysis of this equation allows one to repro- 5 7 5m(14e) ey 1
duce various regimes shown in Figk.2 4dd 3. In the limit j(e) = — /dzH(E,Z) o~ 36 '
. . . 12 1, e=1.
» — 0 we recover analytical solutions obtained above [see o

Egs. (D2),[(D4), and(D6)].

(E3)
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At this point we have to take advantage of the constrgint=
0. To find the value ofg) one should averagg)., over slow

. 4
T T~ oscillations of the external field. This yields the followin
condition
0 2m
/V, = N -
\// ~ \/

T+a 27
Lo 0 T [ drao(osleo) + +/ drl-ior) =0, (€6

FIG. 12: Numerical simulation of oscillations gffor » < 3 (red  that allows one to determine. In particular, replacing the

solid lines). Analytically calculated smooth envelopes siiown by~ functionsf(e) and;j(e) in Egs. (E#) and(B6) with the corre-
dashed lines. sponding approximative formulas, one arrives at the falhgw

equation forw

Numerically one can approximajfés) ~ (1 +¢)/2. o Atcos(a) 5/4\ /7

We parameterizg, = AF, where A is a dimensionless / dz/ A + cosz _1+2<1_ [7] ) =
constant hencg ~ v/F /A — cos(r). We also parameterize /0 A+l
the energy at the time = & asey. From the conservation of

the adiabatic invariant we, therefore, conclude that tipede = / dxv A+ cosx. (E7)
dence of energy on time is implicitly given by the following @
equation

Once the value af is found one can use E{.(E5) to determine
g0. Parameterl can be obtained from the numerical solution
of hydrodynamical equationgl > 1. Simple numerical anal-

The dependence efon that follows from Eq.(E4) is shown YSiS of Ed.[ED) yields

in Fig.[11.
At 7 =~ 7 + o the energy approaches the limiting value a~ 13, €0 ~ 0.13. (E8)

= = 1 and sticks to this point becaugé1) = 0 [see Eq.(EL)]. The qualitative behavior of the functiarir) is illustrated in

[A — cos(n)]*/%j(e) = [A+ 1]/ j(e0). (E4)

In this regime the value aof is given by—gy. From Eq.[E%), Fig.12. o )
we find the relation betweemand;j(c,) as The valuesf given in E_quE?) appear to be in a very gqod
agreement with the solution obtained by direct numericat si
yu 5/4 ulation of the original hydrodynamic equations. Below, we
) cos(a) X ) .
jleo) = {Ai—i-l] (E5)  Dbriefly describe the numerical method.
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