1,425 research outputs found

    The effect of intervertebral cartilage on neutral posture and range of motion in the necks of sauropod dinosaurs

    Get PDF
    The necks of sauropod dinosaurs were a key factor in their evolution. The habitual posture and range of motion of these necks has been controversial, and computer-aided studies have argued for an obligatory sub-horizontal pose. However, such studies are compromised by their failure to take into account the important role of intervertebral cartilage. This cartilage takes very different forms in different animals. Mammals and crocodilians have intervertebral discs, while birds have synovial joints in their necks. The form and thickness of cartilage varies significantly even among closely related taxa. We cannot yet tell whether the neck joints of sauropods more closely resembled those of birds or mammals. Inspection of CT scans showed cartilage:bone ratios of 4.5% for Sauroposeidon and about 20% and 15% for two juvenile Apatosaurus individuals. In extant animals, this ratio varied from 2.59% for the rhea to 24% for a juvenile giraffe. It is not yet possible to disentangle ontogenetic and taxonomic signals, but mammal cartilage is generally three times as thick as that of birds. Our most detailed work, on a turkey, yielded a cartilage:bone ratio of 4.56%. Articular cartilage also added 11% to the length of the turkey's zygapophyseal facets. Simple image manipulation suggests that incorporating 4.56% of neck cartilage into an intervertebral joint of a turkey raises neutral posture by 15°. If this were also true of sauropods, the true neutral pose of the neck would be much higher than has been depicted. An additional 11% of zygapophyseal facet length translates to 11% more range of motion at each joint. More precise quantitative results must await detailed modelling. In summary, including cartilage in our models of sauropod necks shows that they were longer, more elevated and more flexible than previously recognised

    Linear approaches to intramolecular Förster Resonance Energy Transfer probe measurements for quantitative modeling

    Get PDF
    Numerous unimolecular, genetically-encoded Forster Resonance Energy Transfer (FRET) probes for monitoring biochemical activities in live cells have been developed over the past decade. As these probes allow for collection of high frequency, spatially resolved data on signaling events in live cells and tissues, they are an attractive technology for obtaining data to develop quantitative, mathematical models of spatiotemporal signaling dynamics. However, to be useful for such purposes the observed FRET from such probes should be related to a biological quantity of interest through a defined mathematical relationship, which is straightforward when this relationship is linear, and can be difficult otherwise. First, we show that only in rare circumstances is the observed FRET linearly proportional to a biochemical activity. Therefore in most cases FRET measurements should only be compared either to explicitly modeled probes or to concentrations of products of the biochemical activity, but not to activities themselves. Importantly, we find that FRET measured by standard intensity-based, ratiometric methods is inherently non-linear with respect to the fraction of probes undergoing FRET. Alternatively, we find that quantifying FRET either via (1) fluorescence lifetime imaging (FLIM) or (2) ratiometric methods where the donor emission intensity is divided by the directly-excited acceptor emission intensity (denoted R<sub>alt</sub>) is linear with respect to the fraction of probes undergoing FRET. This linearity property allows one to calculate the fraction of active probes based on the FRET measurement. Thus, our results suggest that either FLIM or ratiometric methods based on R<sub>alt</sub> are the preferred techniques for obtaining quantitative data from FRET probe experiments for mathematical modeling purpose

    Prevention of type 2 diabetes in adults with impaired glucose tolerance: the European Diabetes Prevention RCT in Newcastle upon Tyne, UK

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Diabetes prevalence is increasing. The Finnish Diabetes Prevention Study (DPS) showed a 58% reduction in Type 2 Diabetes (T2D) incidence in adults with impaired glucose tolerance (IGT). The European Diabetes Prevention Study (EDIPS) extends the DPS to different European populations, using the same study design. In the Newcastle arm of this study (EDIPS-Newcastle), we tested the hypothesis that T2D can be prevented by lifestyle intervention and explored secondary outcomes in relation to diabetes incidence.</p> <p>Methods</p> <p>We recruited 102 participants (42 men and 60 women, mean age 57 years, mean BMI 34 kgm<sup>-2</sup>) with IGT to EDIPS-Newcastle and randomised to Intervention and usual care Control groups. The intervention included individual motivational interviewing aimed at: weight reduction, increase in physical activity, fibre and carbohydrate intake and reduction of fat intake (secondary outcomes). The primary outcome was diagnosis of T2D.</p> <p>Results</p> <p>Mean duration of follow-up was 3.1 years. T2D was diagnosed in 16 participants (I = 5, C = 11). Absolute incidence of T2D was 32.7 per 1000 person-years in the Intervention-group and 67.1 per 1000 person-years in the Control-group. The overall incidence of diabetes was reduced by 55% in the Intervention-group, compared with the Control-group: RR 0.45 (95%CI 0.2 to 1.2).</p> <p>Explanatory survival analysis of secondary outcomes showed that those who sustained beneficial changes for two or more years reduced their risk of developing T2D.</p> <p>Conclusion</p> <p>Our results are consistent with other diabetes prevention trials. This study was designed as part of a larger study and although the sample size limits statistical significance, the results contribute to the evidence that T2D can be prevented by lifestyle changes in adults with IGT. In explanatory analysis small sustained beneficial changes in weight, physical activity or dietary factors were associated with reduction in T2D incidence.</p> <p>Trial Registration</p> <p>International Standard Randomised Controlled Trial Number registry (ISRCTN)</p> <p>Registry number: ISRCTN 15670600</p> <p><url>http://www.controlled-trials.com/isrctn/search.html?srch=15670600&sort=3&dir=desc&max=10</url></p

    Structural insights into Clostridium perfringens delta toxin pore formation

    Get PDF
    Clostridium perfringens Delta toxin is one of the three hemolysin-like proteins produced by C. perfringens type C and possibly type B strains. One of the others, NetB, has been shown to be the major cause of Avian Nectrotic Enteritis, which following the reduction in use of antibiotics as growth promoters, has become an emerging disease of industrial poultry. Delta toxin itself is cytotoxic to the wide range of human and animal macrophages and platelets that present GM2 ganglioside on their membranes. It has sequence similarity with Staphylococcus aureus β-pore forming toxins and is expected to heptamerize and form pores in the lipid bilayer of host cell membranes. Nevertheless, its exact mode of action remains undetermined. Here we report the 2.4 Å crystal structure of monomeric Delta toxin. The superposition of this structure with the structure of the phospholipid-bound F component of S. aureus leucocidin (LukF) revealed that the glycerol molecules bound to Delta toxin and the phospholipids in LukF are accommodated in the same hydrophobic clefts, corresponding to where the toxin is expected to latch onto the membrane, though the binding sites show significant differences. From structure-based sequence alignment with the known structure of staphylococcal α-hemolysin, a model of the Delta toxin pore form has been built. Using electron microscopy, we have validated our model and characterized the Delta toxin pore on liposomes. These results highlight both similarities and differences in the mechanism of Delta toxin (and by extension NetB) cytotoxicity from that of the staphylococcal pore-forming toxins

    The actin-myosin regulatory MRCK kinases: regulation, biological functions and associations with human cancer

    Get PDF
    The contractile actin-myosin cytoskeleton provides much of the force required for numerous cellular activities such as motility, adhesion, cytokinesis and changes in morphology. Key elements that respond to various signal pathways are the myosin II regulatory light chains (MLC), which participate in actin-myosin contraction by modulating the ATPase activity and consequent contractile force generation mediated by myosin heavy chain heads. Considerable effort has focussed on the role of MLC kinases, and yet the contributions of the myotonic dystrophy-related Cdc42-binding kinases (MRCK) proteins in MLC phosphorylation and cytoskeleton regulation have not been well characterized. In contrast to the closely related ROCK1 and ROCK2 kinases that are regulated by the RhoA and RhoC GTPases, there is relatively little information about the CDC42-regulated MRCKα, MRCKβ and MRCKγ members of the AGC (PKA, PKG and PKC) kinase family. As well as differences in upstream activation pathways, MRCK and ROCK kinases apparently differ in the way that they spatially regulate MLC phosphorylation, which ultimately affects their influence on the organization and dynamics of the actin-myosin cytoskeleton. In this review, we will summarize the MRCK protein structures, expression patterns, small molecule inhibitors, biological functions and associations with human diseases such as cancer

    Potential conservation of circadian clock proteins in the phylum Nematoda as revealed by bioinformatic searches

    Get PDF
    Although several circadian rhythms have been described in C. elegans, its molecular clock remains elusive. In this work we employed a novel bioinformatic approach, applying probabilistic methodologies, to search for circadian clock proteins of several of the best studied circadian model organisms of different taxa (Mus musculus, Drosophila melanogaster, Neurospora crassa, Arabidopsis thaliana and Synechoccocus elongatus) in the proteomes of C. elegans and other members of the phylum Nematoda. With this approach we found that the Nematoda contain proteins most related to the core and accessory proteins of the insect and mammalian clocks, which provide new insights into the nematode clock and the evolution of the circadian system.Fil: Romanowski, Andrés. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Bioquímicas de Buenos Aires. Fundación Instituto Leloir. Instituto de Investigaciones Bioquímicas de Buenos Aires; Argentina. Universidad Nacional de Quilmes. Departamento de Ciencia y Tecnología. Laboratorio de Cronobiología; ArgentinaFil: Garavaglia, Matías Javier. Universidad Nacional de Quilmes. Departamento de Ciencia y Tecnología. Laboratorio de Ing.genética y Biolog.molecular y Celular. Area Virus de Insectos; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Goya, María Eugenia. Universidad Nacional de Quilmes. Departamento de Ciencia y Tecnología. Laboratorio de Cronobiología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Ghiringhelli, Pablo Daniel. Universidad Nacional de Quilmes. Departamento de Ciencia y Tecnología. Laboratorio de Ing.genética y Biolog.molecular y Celular. Area Virus de Insectos; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Golombek, Diego Andres. Universidad Nacional de Quilmes. Departamento de Ciencia y Tecnología. Laboratorio de Cronobiología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentin

    Implementation salvage experiences from the Melbourne diabetes prevention study

    Get PDF
    Background Many public health interventions based on apparently sound evidence from randomised controlled trials encounter difficulties when being scaled up within health systems. Even under the best of circumstances, implementation is exceedingly difficult. In this paper we will describe the implementation salvage experiences from the Melbourne Diabetes Prevention Study, which is a randomised controlled trial of the effectiveness and cost-effectiveness nested in the state-wide Life! Taking Action on Diabetes program in Victoria, Australia.Discussion The Melbourne Diabetes Prevention Study sits within an evolving larger scale implementation project, the Life! program. Changes that occurred during the roll-out of that program had a direct impact on the process of conducting this trial. The issues and methods of recovery the study team encountered were conceptualised using an implementation salvage strategies framework. The specific issues the study team came across included continuity of the state funding for Life! program and structural changes to the Life! program which consisted of adjustments to eligibility criteria, referral processes, structure and content, as well as alternative program delivery for different population groups. Staff turnover, recruitment problems, setting and venue concerns, availability of potential participants and participant characteristics were also identified as evaluation roadblocks. Each issue and corresponding salvage strategy is presented.Summary The experiences of conducting such a novel trial as the preliminary Melbourne Diabetes Prevention Study have been invaluable. The lessons learnt and knowledge gained will inform the future execution of this trial in the coming years. We anticipate that these results will also be beneficial to other researchers conducting similar trials in the public health field. We recommend that researchers openly share their experiences, barriers and challenges when conducting randomised controlled trials and implementation research. We encourage them to describe the factors that may have inhibited or enhanced the desired outcomes so that the academic community can learn and expand the research foundation of implementation salvage.<br /

    The Peripheral Blood Transcriptome Identifies the Presence and Extent of Disease in Idiopathic Pulmonary Fibrosis

    Get PDF
    <div><h3>Rationale</h3><p>Peripheral blood biomarkers are needed to identify and determine the extent of idiopathic pulmonary fibrosis (IPF). Current physiologic and radiographic prognostic indicators diagnose IPF too late in the course of disease. We hypothesize that peripheral blood biomarkers will identify disease in its early stages, and facilitate monitoring for disease progression.</p> <h3>Methods</h3><p>Gene expression profiles of peripheral blood RNA from 130 IPF patients were collected on Agilent microarrays. Significance analysis of microarrays (SAM) with a false discovery rate (FDR) of 1% was utilized to identify genes that were differentially-expressed in samples categorized based on percent predicted D<sub>L</sub>CO and FVC.</p> <h3>Main Measurements and Results</h3><p>At 1% FDR, 1428 genes were differentially-expressed in mild IPF (D<sub>L</sub>CO >65%) compared to controls and 2790 transcripts were differentially- expressed in severe IPF (D<sub>L</sub>CO >35%) compared to controls. When categorized by percent predicted D<sub>L</sub>CO, SAM demonstrated 13 differentially-expressed transcripts between mild and severe IPF (< 5% FDR). These include CAMP, CEACAM6, CTSG, DEFA3 and A4, OLFM4, HLTF, PACSIN1, GABBR1, IGHM, and 3 unknown genes. Principal component analysis (PCA) was performed to determine outliers based on severity of disease, and demonstrated 1 mild case to be clinically misclassified as a severe case of IPF. No differentially-expressed transcripts were identified between mild and severe IPF when categorized by percent predicted FVC.</p> <h3>Conclusions</h3><p>These results demonstrate that the peripheral blood transcriptome has the potential to distinguish normal individuals from patients with IPF, as well as extent of disease when samples were classified by percent predicted D<sub>L</sub>CO, but not FVC.</p> </div

    Discordance in glycemic categories and regression to normality at baseline in 10,000 people in a Type 2 diabetes prevention trial

    Get PDF
    The world diabetes population quadrupled between 1980 and 2014 to 422 million and the enormous impact of Type 2 diabetes is recognised by the recent creation of national Type 2 diabetes prevention programmes. There is uncertainty about how to correctly risk stratify people for entry into prevention programmes, how combinations of multiple ‘at high risk’ glycemic categories predict outcome, and how the large recently defined ‘at risk’ population based on an elevated glycosylated haemoglobin (HbA1c) should be managed. We identified all 141,973 people at highest risk of diabetes in our population, and screened 10,000 of these with paired fasting plasma glucose and HbA1c for randomisation into a very large Type 2 diabetes prevention trial. Baseline discordance rate between highest risk categories was 45.6 %, and 21.3 - 37.0 % of highest risk glycaemic categories regressed to normality between paired baseline measurements (median 40 days apart). Accurate risk stratification using both fasting plasma glucose and HbA1c data, the use of paired baseline data, and awareness of diagnostic imprecision at diagnostic thresholds would avoid substantial overestimation of the true risk of Type 2 diabetes and the potential benefits (or otherwise) of intervention, in high risk subjects entering prevention trials and programmes

    Inhibition of Proliferation and Induction of Apoptosis in Multiple Myeloma Cell Lines by CD137 Ligand Signaling

    Get PDF
    BACKGROUND: Multiple myeloma (MM) is a malignancy of terminally-differentiated plasma cells, and the second most prevalent blood cancer. At present there is no cure for MM, and the average prognosis is only three to five years. Current treatments such as chemotherapy are able to prolong a patient's life but rarely prevent relapse of the disease. Even hematopoietic stem cell transplants and novel drug combinations are often not curative, underscoring the need for a continued search for novel therapeutics. CD137 and its ligand are members of the Tumor Necrosis Factor (TNF) receptor and TNF superfamilies, respectively. Since CD137 ligand cross-linking enhances proliferation and survival of healthy B cells we hypothesized that it would also act as a growth stimulus for B cell cancers. METHODOLOGY/PRINCIPAL FINDINGS: Proliferation and survival of B cell lymphoma cell lines were not affected or slightly enhanced by CD137 ligand agonists in vitro. But surprisingly, they had the opposite effects on MM cells, where CD137 ligand signals inhibited proliferation and induced cell death by apoptosis. Furthermore, secretion of the pro-inflammatory cytokines, IL-6 and IL-8 were also enhanced in MM but not in non-MM cell lines in response to CD137 ligand agonists. The secretion of these cytokines in response to CD137 ligand signaling was consistent with the observed activation of the classical NF-kappaB pathway. We hypothesize that the induction of this pathway results in activation-induced cell death, and that this is the underlying mechanism of CD137-induced MM cell death and growth arrest. CONCLUSIONS/SIGNIFICANCE: These data point to a hitherto unrecognized role of CD137 and CD137 ligand in MM cell biology. The selective inhibition of proliferation and induction of cell death in MM cells by CD137 ligand agonists may also warrant a closer evaluation of their therapeutic potential
    corecore