73 research outputs found

    Targeting of Histone Acetyltransferase p300 by Cyclopentenone Prostaglandin Δ12-PGJ2 through Covalent Binding to Cys1438

    Get PDF
    This document is the Accepted Manuscript version of a Published Work that appeared in final form in Chemical Research in Toxicology, copyright © American Chemical Society after peer review and technical editing by the publisher. To access the final edited and published work see http://pubs.acs.org/doi/abs/10.1021/tx200383cInhibitors of histone acetyltransferases (HATs) are perceived to treat diseases like cancer, neurodegeneration, and AIDS. On the basis of previous studies, we hypothesized that Cys1438 in the substrate binding site could be targeted by Δ12-prostaglandin J2 (Δ12-PGJ2), a cyclopentenone prostaglandin (CyPG) derived from PGD2. We demonstrate here the ability of CyPGs to inhibit p300 HAT-dependent acetylation of histone H3. A cell-based assay system clearly showed that the α,β-unsaturation in the cyclopentenone ring of Δ12-PGJ2 was crucial for the inhibitory activity, while the 9,10-dihydro-15-deoxy- Δ12,14-PGJ2, which lacks the electrophilic carbon (at carbon 9), was ineffective. Molecular docking studies suggested that Δ12-PGJ2 places the electrophilic carbon in the cyclopentenone ring well within the vicinity of Cys1438 of p300 to form a covalent Michael adduct. Site-directed mutagenesis of the p300 HAT domain, peptide competition assay involving p300 wild type and mutant peptides, followed by mass spectrometric analysis confirmed the covalent interaction of Δ12-PGJ2 with Cys1438. Using biotinylated derivatives of Δ12-PGJ2 and 9,10-dihydro-15-deoxy- Δ12,14-PGJ2, we demonstrate the covalent interaction of Δ12-PGJ2 with the p300 HAT domain, but not the latter. In agreement with the in vitro filter binding assay, CyPGs were also found to inhibit H3 histone acetylation in cell-based assays. In addition, Δ12-PGJ2 also inhibited the acetylation of the HIV-1 Tat by recombinant p300 in in vitro assays. This study demonstrates, for the first time, that Δ12-PGJ2 inhibits p300 through Michael addition, where α,β-unsaturated carbonyl function is absolutely required for the inhibitory activity

    Selenoprotein gene nomenclature

    Get PDF
    The human genome contains 25 genes coding for selenocysteine-containing proteins (selenoproteins). These proteins are involved in a variety of functions, most notably redox homeostasis. Selenoprotein enzymes with known functions are designated according to these functions: TXNRD1, TXNRD2, and TXNRD3 (thioredoxin reductases), GPX1, GPX2, GPX3, GPX4 and GPX6 (glutathione peroxidases), DIO1, DIO2, and DIO3 (iodothyronine deiodinases), MSRB1 (methionine-R-sulfoxide reductase 1) and SEPHS2 (selenophosphate synthetase 2). Selenoproteins without known functions have traditionally been denoted by SEL or SEP symbols. However, these symbols are sometimes ambiguous and conflict with the approved nomenclature for several other genes. Therefore, there is a need to implement a rational and coherent nomenclature system for selenoprotein-encoding genes. Our solution is to use the root symbol SELENO followed by a letter. This nomenclature applies to SELENOF (selenoprotein F, the 15 kDa selenoprotein, SEP15), SELENOH (selenoprotein H, SELH, C11orf31), SELENOI (selenoprotein I, SELI, EPT1), SELENOK (selenoprotein K, SELK), SELENOM (selenoprotein M, SELM), SELENON (selenoprotein N, SEPN1, SELN), SELENOO (selenoprotein O, SELO), SELENOP (selenoprotein P, SeP, SEPP1, SELP), SELENOS (selenoprotein S, SELS, SEPS1, VIMP), SELENOT (selenoprotein T, SELT), SELENOV (selenoprotein V, SELV) and SELENOW (selenoprotein W, SELW, SEPW1). This system, approved by the HUGO Gene Nomenclature Committee, also resolves conflicting, missing and ambiguous designations for selenoprotein genes and is applicable to selenoproteins across vertebrates

    Outcomes of Decompressive Surgery for Patients With Severe Cerebral Venous Thrombosis: DECOMPRESS2 Observational Study

    Get PDF
    BACKGROUND: Decompressive neurosurgery is recommended for patients with cerebral venous thrombosis (CVT) who have large parenchymal lesions and impending brain herniation. This recommendation is based on limited evidence. We report long-term outcomes of patients with CVT treated by decompressive neurosurgery in an international cohort. METHODS: DECOMPRESS2 (Decompressive Surgery for Patients With Cerebral Venous Thrombosis, Part 2) was a prospective, international cohort study. Consecutive patients with CVT treated by decompressive neurosurgery were evaluated at admission, discharge, 6 months, and 12 months. The primary outcome was death or severe disability (modified Rankin Scale scores, 5-6) at 12 months. The secondary outcomes included patient and caregiver opinions on the benefits of surgery. The association between baseline variables before surgery and the primary outcome was assessed by multivariable logistic regression. RESULTS: A total of 118 patients (80 women; median age, 38 years) were included from 15 centers in 10 countries from December 2011 to December 2019. Surgery (115 craniectomies and 37 hematoma evacuations) was performed within a median of 1 day after diagnosis. At last assessment before surgery, 68 (57.6%) patients were comatose, fixed dilated pupils were found unilaterally in 27 (22.9%) and bilaterally in 9 (7.6%). Twelve-month follow-up data were available for 113 (95.8%) patients. Forty-six (39%) patients were dead or severely disabled (modified Rankin Scale scores, 5-6), of whom 40 (33.9%) patients had died. Forty-two (35.6%) patients were independent (modified Rankin Scale scores, 0-2). Coma (odds ratio, 2.39 [95% CI, 1.03-5.56]) and fixed dilated pupil (odds ratio, 2.22 [95% CI, 0.90-4.92]) were predictors of death or severe disability. Of the survivors, 56 (78.9%) patients and 61 (87.1%) caregivers expressed a positive opinion on surgery. CONCLUSIONS: Two-thirds of patients with severe CVT were alive and more than one-third were independent 1 year after decompressive surgery. Among survivors, surgery was judged as worthwhile by 4 out of 5 patients and caregivers. These results support the recommendation to perform decompressive neurosurgery in patients with CVT with impending brain herniation

    Daksha: On Alert for High Energy Transients

    Full text link
    We present Daksha, a proposed high energy transients mission for the study of electromagnetic counterparts of gravitational wave sources, and gamma ray bursts. Daksha will comprise of two satellites in low earth equatorial orbits, on opposite sides of earth. Each satellite will carry three types of detectors to cover the entire sky in an energy range from 1 keV to >1 MeV. Any transients detected on-board will be announced publicly within minutes of discovery. All photon data will be downloaded in ground station passes to obtain source positions, spectra, and light curves. In addition, Daksha will address a wide range of science cases including monitoring X-ray pulsars, studies of magnetars, solar flares, searches for fast radio burst counterparts, routine monitoring of bright persistent high energy sources, terrestrial gamma-ray flashes, and probing primordial black hole abundances through lensing. In this paper, we discuss the technical capabilities of Daksha, while the detailed science case is discussed in a separate paper.Comment: 9 pages, 3 figures, 1 table. Additional information about the mission is available at https://www.dakshasat.in

    Science with the Daksha High Energy Transients Mission

    Full text link
    We present the science case for the proposed Daksha high energy transients mission. Daksha will comprise of two satellites covering the entire sky from 1~keV to >1>1~MeV. The primary objectives of the mission are to discover and characterize electromagnetic counterparts to gravitational wave source; and to study Gamma Ray Bursts (GRBs). Daksha is a versatile all-sky monitor that can address a wide variety of science cases. With its broadband spectral response, high sensitivity, and continuous all-sky coverage, it will discover fainter and rarer sources than any other existing or proposed mission. Daksha can make key strides in GRB research with polarization studies, prompt soft spectroscopy, and fine time-resolved spectral studies. Daksha will provide continuous monitoring of X-ray pulsars. It will detect magnetar outbursts and high energy counterparts to Fast Radio Bursts. Using Earth occultation to measure source fluxes, the two satellites together will obtain daily flux measurements of bright hard X-ray sources including active galactic nuclei, X-ray binaries, and slow transients like Novae. Correlation studies between the two satellites can be used to probe primordial black holes through lensing. Daksha will have a set of detectors continuously pointing towards the Sun, providing excellent hard X-ray monitoring data. Closer to home, the high sensitivity and time resolution of Daksha can be leveraged for the characterization of Terrestrial Gamma-ray Flashes.Comment: 19 pages, 7 figures. Submitted to ApJ. More details about the mission at https://www.dakshasat.in

    Global burden and strength of evidence for 88 risk factors in 204 countries and 811 subnational locations, 1990–2021: a systematic analysis for the Global Burden of Disease Study 2021

    Get PDF
    Background: Understanding the health consequences associated with exposure to risk factors is necessary to inform public health policy and practice. To systematically quantify the contributions of risk factor exposures to specific health outcomes, the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2021 aims to provide comprehensive estimates of exposure levels, relative health risks, and attributable burden of disease for 88 risk factors in 204 countries and territories and 811 subnational locations, from 1990 to 2021. Methods: The GBD 2021 risk factor analysis used data from 54 561 total distinct sources to produce epidemiological estimates for 88 risk factors and their associated health outcomes for a total of 631 risk–outcome pairs. Pairs were included on the basis of data-driven determination of a risk–outcome association. Age-sex-location-year-specific estimates were generated at global, regional, and national levels. Our approach followed the comparative risk assessment framework predicated on a causal web of hierarchically organised, potentially combinative, modifiable risks. Relative risks (RRs) of a given outcome occurring as a function of risk factor exposure were estimated separately for each risk–outcome pair, and summary exposure values (SEVs), representing risk-weighted exposure prevalence, and theoretical minimum risk exposure levels (TMRELs) were estimated for each risk factor. These estimates were used to calculate the population attributable fraction (PAF; ie, the proportional change in health risk that would occur if exposure to a risk factor were reduced to the TMREL). The product of PAFs and disease burden associated with a given outcome, measured in disability-adjusted life-years (DALYs), yielded measures of attributable burden (ie, the proportion of total disease burden attributable to a particular risk factor or combination of risk factors). Adjustments for mediation were applied to account for relationships involving risk factors that act indirectly on outcomes via intermediate risks. Attributable burden estimates were stratified by Socio-demographic Index (SDI) quintile and presented as counts, age-standardised rates, and rankings. To complement estimates of RR and attributable burden, newly developed burden of proof risk function (BPRF) methods were applied to yield supplementary, conservative interpretations of risk–outcome associations based on the consistency of underlying evidence, accounting for unexplained heterogeneity between input data from different studies. Estimates reported represent the mean value across 500 draws from the estimate's distribution, with 95% uncertainty intervals (UIs) calculated as the 2·5th and 97·5th percentile values across the draws. Findings: Among the specific risk factors analysed for this study, particulate matter air pollution was the leading contributor to the global disease burden in 2021, contributing 8·0% (95% UI 6·7–9·4) of total DALYs, followed by high systolic blood pressure (SBP; 7·8% [6·4–9·2]), smoking (5·7% [4·7–6·8]), low birthweight and short gestation (5·6% [4·8–6·3]), and high fasting plasma glucose (FPG; 5·4% [4·8–6·0]). For younger demographics (ie, those aged 0–4 years and 5–14 years), risks such as low birthweight and short gestation and unsafe water, sanitation, and handwashing (WaSH) were among the leading risk factors, while for older age groups, metabolic risks such as high SBP, high body-mass index (BMI), high FPG, and high LDL cholesterol had a greater impact. From 2000 to 2021, there was an observable shift in global health challenges, marked by a decline in the number of all-age DALYs broadly attributable to behavioural risks (decrease of 20·7% [13·9–27·7]) and environmental and occupational risks (decrease of 22·0% [15·5–28·8]), coupled with a 49·4% (42·3–56·9) increase in DALYs attributable to metabolic risks, all reflecting ageing populations and changing lifestyles on a global scale. Age-standardised global DALY rates attributable to high BMI and high FPG rose considerably (15·7% [9·9–21·7] for high BMI and 7·9% [3·3–12·9] for high FPG) over this period, with exposure to these risks increasing annually at rates of 1·8% (1·6–1·9) for high BMI and 1·3% (1·1–1·5) for high FPG. By contrast, the global risk-attributable burden and exposure to many other risk factors declined, notably for risks such as child growth failure and unsafe water source, with age-standardised attributable DALYs decreasing by 71·5% (64·4–78·8) for child growth failure and 66·3% (60·2–72·0) for unsafe water source. We separated risk factors into three groups according to trajectory over time: those with a decreasing attributable burden, due largely to declining risk exposure (eg, diet high in trans-fat and household air pollution) but also to proportionally smaller child and youth populations (eg, child and maternal malnutrition); those for which the burden increased moderately in spite of declining risk exposure, due largely to population ageing (eg, smoking); and those for which the burden increased considerably due to both increasing risk exposure and population ageing (eg, ambient particulate matter air pollution, high BMI, high FPG, and high SBP). Interpretation: Substantial progress has been made in reducing the global disease burden attributable to a range of risk factors, particularly those related to maternal and child health, WaSH, and household air pollution. Maintaining efforts to minimise the impact of these risk factors, especially in low SDI locations, is necessary to sustain progress. Successes in moderating the smoking-related burden by reducing risk exposure highlight the need to advance policies that reduce exposure to other leading risk factors such as ambient particulate matter air pollution and high SBP. Troubling increases in high FPG, high BMI, and other risk factors related to obesity and metabolic syndrome indicate an urgent need to identify and implement interventions

    Selenium and Selenoproteins in Gut Inflammation—A Review

    No full text
    Inflammatory bowel disease (IBD), characterized by severe flares and remissions, is a debilitating condition. While the etiology is unknown, many immune cells, such as macrophages, T cells and innate lymphoid cells, are implicated in the pathogenesis of the disease. Previous studies have shown the ability of micronutrient selenium (Se) and selenoproteins to impact inflammatory signaling pathways implicated in the pathogenesis of the disease. In particular, two transcription factors, nuclear factor-κB (NF-κB), and peroxisome proliferator activated receptor (PPAR)γ, which are involved in the activation of immune cells, and are also implicated in various stages of inflammation and resolution, respectively, are impacted by Se status. Available therapies for IBD produce detrimental side effects, resulting in the need for alternative therapies. Here, we review the current understanding of the role of NF-κB and PPARγ in the activation of immune cells during IBD, and how Se and selenoproteins modulate effective resolution of inflammation to be considered as a promising alternative to treat IBD

    Penicillin acylase catalyzed synthesis of penicillin-G from substrates anchored in cyclodextrins

    No full text
    6-12Penicillin acylase (EC 3.5.1.11 ) catalyses the condensation of phenylacetic acid (PAA) and 6-aminopenicillanic acid (6-A A) to form benzylpenicillin (BP). Both PAA and 6-APA were found to form host-guest complexes with β-methylcyclodextrin (βm-CD) and γ-cyclodextrin (γ -CD) respectively. The rate of the reaction catalyzed by the enzyme remained unaffected if one of the substrates used was in the cyclodextrin complexed form. However, in this case, the reaction lasted longer and yielded about 20 per cent more products compared to the condensation reaction involving only uncomplexed substrates. There was a distinct increase in the rate of formation of the antibiotic, if both substrates used are in CD-complexed form .</span
    corecore