92 research outputs found

    Subcellular heterogeneity of ryanodine receptor properties in ventricular myocytes with low T-tubule density

    Get PDF
    Rationale: In ventricular myocytes of large mammals, not all ryanodine receptor (RyR) clusters are associated with T-tubules (TTs); this fraction increases with cellular remodeling after myocardial infarction (MI). Objective: To characterize RyR functional properties in relation to TT proximity, at baseline and after MI. Methods: Myocytes were isolated from left ventricle of healthy pigs (CTRL) or from the area adjacent to a myocardial infarction (MI). Ca2+ transients were measured under whole-cell voltage clamp during confocal linescan imaging (fluo-3) and segmented according to proximity of TTs (sites of early Ca2+ release, F>F50 within 20 ms) or their absence (delayed areas). Spontaneous Ca2+ release events during diastole, Ca2+ sparks, reflecting RyR activity and properties, were subsequently assigned to either category. Results: In CTRL, spark frequency was higher in proximity of TTs, but spark duration was significantly shorter. Block of Na+/Ca2+ exchanger (NCX) prolonged spark duration selectively near TTs, while block of Ca2+ influx via Ca2+ channels did not affect sparks properties. In MI, total spark mass was increased in line with higher SR Ca2+ content. Extremely long sparks (>47.6 ms) occurred more frequently. The fraction of near-TT sparks was reduced; frequency increased mainly in delayed sites. Increased duration was seen in near-TT sparks only; Ca2+ removal by NCX at the membrane was significantly lower in MI. Conclusion: TT proximity modulates RyR cluster properties resulting in intracellular heterogeneity of diastolic spark activity. Remodeling in the area adjacent to MI differentially affects these RyR subpopulations. Reduction of the number of sparks near TTs and reduced local NCX removal limit cellular Ca2+ loss and raise SR Ca2+ content, but may promote Ca2+ waves

    Hyperactive ryanodine receptors in human heart failure and ischaemic cardiomyopathy reside outside of couplons

    Get PDF
    Aims In ventricular myocytes from humans and large mammals, the transverse and axial tubular system (TATS) network is less extensive than in rodents with consequently a greater proportion of ryanodine receptors (RyRs) not coupled to this membrane system. TATS remodelling in heart failure (HF) and after myocardial infarction (MI) increases the fraction of non-coupled RyRs. Here we investigate whether this remodelling alters the activity of coupled and non-coupled RyR sub-populations through changes in local signalling. We study myocytes from patients with end-stage HF, compared with non-failing (non-HF), and myocytes from pigs with MI and reduced left ventricular (LV) function, compared with sham intervention (SHAM).Methods and resultsSingle LV myocytes for functional studies were isolated according to standard protocols. Immunofluorescent staining visualized organization of TATS and RyRs. Ca2+ was measured by confocal imaging (fluo-4 as indicator) and using whole-cell patch-clamp (37°C). Spontaneous Ca2+ release events, Ca2+ sparks, as a readout for RyR activity were recorded during a 15 s period following conditioning stimulation at 2 Hz. Sparks were assigned to cell regions categorized as coupled or non-coupled sites according to a previously developed method. Human HF myocytes had more non-coupled sites and these had more spontaneous activity than in non-HF. Hyperactivity of these non-coupled RyRs was reduced by Ca2+/calmodulin-dependent kinase II (CaMKII) inhibition. Myocytes from MI pigs had similar changes compared with SHAM controls as seen in human HF myocytes. As well as by CaMKII inhibition, in MI, the increased activity of non-coupled sites was inhibited by mitochondrial reactive oxygen species (mito-ROS) scavenging. Under adrenergic stimulation, Ca2+ waves were more frequent and originated at non-coupled sites, generating larger Na+/Ca2+ exchange currents in MI than in SHAM. Inhibition of CaMKII or mito-ROS scavenging reduced spontaneous Ca2+ waves, and improved excitation–contraction coupling.ConclusionsIn HF and after MI, RyR microdomain re-organization enhances spontaneous Ca2+ release at non-coupled sites in a manner dependent on CaMKII activation and mito-ROS production. This specific modulation generates a substrate for arrhythmia that appears to be responsive to selective pharmacologic modulation

    Altered adrenergic response in myocytes bordering a chronic myocardial infarction underlies <i>in vivo</i> triggered activity and repolarization instability

    Get PDF
    Ventricular arrhythmias are a major complication early after myocardial infarction (MI). The heterogeneous peri‐infarct zone forms a substrate for re‐entry while arrhythmia initiation is often associated with sympathetic activation. We studied the mechanisms triggering these post‐MI arrhythmias in vivo and their relation to regional myocyte remodelling. In pigs with chronic MI (6 weeks), in vivo monophasic action potentials were simultaneously recorded in the peri‐infarct and remote regions during adrenergic stimulation with isoproterenol (ISO). Sham animals served as controls. During infusion of ISO in vivo, the incidence of delayed afterdepolarizations (DADs) and beat‐to‐beat variability of repolarization (BVR) was higher in the peri‐infarct than in the remote region. Myocytes isolated from the peri‐infarct region, in comparison to myocytes from the remote region, had more DADs, associated with spontaneous Ca2+ release, and a higher incidence of spontaneous action potentials when exposed to ISO (9.99 ± 4.2 vs. 0.16 ± 0.05 APs/min, p = 0.004); these were suppressed by CaMKII inhibition. Peri‐infarct myocytes also had reduced repolarization reserve and increased BVR (26 ± 10 ms vs. 9 ± 7 ms, p 2+ handling at baseline and myocyte hypertrophy were present throughout the LV. Expression of some of the related genes was however different between the regions. In conclusion, altered myocyte adrenergic responses in the peri‐infarct, but not in the remote region, provide a source of triggered activity in vivo and of repolarization instability amplifying the substrate for re‐entry. These findings stimulate further exploration of region‐specific therapies targeting myocytes and autonomic modulation

    MSK-Mediated Phosphorylation of Histone H3 Ser28 Couples MAPK Signalling with Early Gene Induction and Cardiac Hypertrophy

    Get PDF
    Heart failure is a leading cause of death that develops subsequent to deleterious hypertrophic cardiac remodelling. MAPK pathways play a key role in coordinating the induction of gene expression during hypertrophy. Induction of the immediate early gene (IEG) response including activator protein 1 (AP-1) complex factors is a necessary and early event in this process. How MAPK and IEG expression are coupled during cardiac hypertrophy is not resolved. Here, in vitro, in rodent models and in human samples, we demonstrate that MAPK-stimulated IEG induction depends on the mitogen and stress-activated protein kinase (MSK) and its phosphorylation of histone H3 at serine 28 (pH3S28). pH3S28 in IEG promoters in turn recruits Brg1, a BAF60 ATP-dependent chromatin remodelling complex component, initiating gene expression. Without MSK activity and IEG induction, the hypertrophic response is suppressed. These studies provide new mechanistic insights into the role of MAPK pathways in signalling to the epigenome and regulation of gene expression during cardiac hypertrophy

    Cx43 hemichannel microdomain signaling at the intercalated disc enhances cardiac excitability

    Full text link
    Cx43, a major cardiac connexin, forms precursor hemichannels that accrue at the intercalated disc to assemble as gap junctions. While gap junctions are crucial for electrical conduction in the heart, little is known about the potential roles of hemichannels. Recent evidence suggests that inhibiting Cx43 hemichannel opening with Gap19 has antiarrhythmic effects. Here, we used multiple electrophysiology, imaging, and super-resolution techniques to understand and define the conditions underlying Cx43 hemichannel activation in ventricular cardiomyocytes, their contribution to diastolic Ca2+ release from the sarcoplasmic reticulum, and their impact on electrical stability. We showed that Cx43 hemichannels were activated during diastolic Ca2+ release in single ventricular cardiomyocytes and cardiomyocyte cell pairs from mice and pigs. This activation involved Cx43 hemichannel Ca2+ entry and coupling to Ca2+ release microdomains at the intercalated disc, resulting in enhanced Ca2+ dynamics. Hemichannel opening furthermore contributed to delayed afterdepolarizations and triggered action potentials. In single cardiomyocytes, cardiomyocyte cell pairs, and arterially perfused tissue wedges from failing human hearts, increased hemichannel activity contributed to electrical instability compared with nonfailing rejected donor hearts. We conclude that microdomain coupling between Cx43 hemichannels and Ca2+ release is a potentially novel, targetable mechanism of cardiac arrhythmogenesis in heart failure. Copyright: © 2021, American Society for Clinical Investigation.We sincerely thank Ellen Cocquyt, Diego De Baere, Vicky Pauwelyn, Annemie Biesemans, Roxane Menten, and Mingliang Zhang for superb technical support. We would also like to thank the heart failure unit, the transplant surgical team, and the transplant coordinating team of UZ Leuven for help in providing the human explant hearts. This work was supported by the Fund for Scientific Research Flanders (project grants to LL, KRS, and GB; a postdoctoral fellowship to ED; and PhD fellowships to MDS and MA); Ghent University (a postdoctoral fellowship to KW and PhD fellowships to AL and TN); the Interuniversity Attraction Poles P7/10 to KRS and LL; NIH (project grants to ER and MD); the Fondation Leducq (transatlantic network award to MD); and a grant from the Ministry of Science and Higher Education of the Russian Federation, agreement 075-15-2020-800, to AVP

    Improving public health by improving clinical trial guidelines and their application.

    Get PDF
    Evidence generated from randomized controlled trials forms the foundation of cardiovascular therapeutics and has led to the adoption of numerous drugs and devices that prolong survival and reduce morbidity, as well as the avoidance of interventions that have been shown to be ineffective or even unsafe. Many aspects of cardiovascular research have evolved considerably since the first randomized trials in cardiology were conducted. In order to be large enough to provide reliable evidence about effects on major outcomes, cardiovascular trials may now involve thousands of patients recruited from hundreds of clinical sites in many different countries. Costly infrastructure has developed to meet the increasingly complex organizational and operational requirements of these clinical trials. Concerns have been raised that this approach is unsustainable, inhibiting the reliable evaluation of new and existing treatments, to the detriment of patient care. These issues were considered by patients, regulators, funders, and trialists at a meeting of the European Society of Cardiology Cardiovascular Roundtable in October 2015. This paper summarizes the key insights and discussions from the workshop, highlights subsequent progress, and identifies next steps to produce meaningful change in the conduct of cardiovascular clinical research
    corecore