18,827 research outputs found

    United States benefits of improved worldwide wheat crop information from a LANDSAT system

    Get PDF
    The value of worldwide information improvements on wheat crops, promised by LANDSAT, is measured in the context of world wheat markets. These benefits are based on current LANDSAT technical goals and assume that information is made available to all (United States and other countries) at the same time. A detailed empirical sample demonstration of the effect of improved information is given; the history of wheat commodity prices for 1971-72 is reconstructed and the price changes from improved vs. historical information are compared. The improved crop forecasting from a LANDSAT system assumed include wheat crop estimates of 90 percent accuracy for each major wheat producing region. Accurate, objective worldwide wheat crop information using space systems may have a very stabilizing influence on world commodity markets, in part making possible the establishment of long-term, stable trade relationships

    Dynamics of Macroscopic Wave Packet Passing through Double Slits: Role of Gravity and Nonlinearity

    Full text link
    Using the nonlinear Schroedinger equation (Gross-Pitaevskii equation), the dynamics of a macroscopic wave packet for Bose-Einstein condensates falling through double slits is analyzed. This problem is identified with a search for the fate of a soliton showing a head-on collision with a hard-walled obstacle of finite size. We explore the splitting of the wave packet and its reorganization to form an interference pattern. Particular attention is paid to the role of gravity (g) and repulsive nonlinearity (u_0) in the fringe pattern. The peak-to-peak distance in the fringe pattern and the number of interference peaks are found to be proportional to g^(-1/2) and u_0^(1/2)g^(1/4), respectively. We suggest a way of designing an experiment under controlled gravity and nonlinearity.Comment: 10 pages, 4 figures and 1 tabl

    Interparticle interactions:Energy potentials, energy transfer, and nanoscale mechanical motion in response to optical radiation

    Get PDF
    In the interactions between particles of material with slightly different electronic levels, unusually large shifts in the pair potential can result from photoexcitation, and on subsequent electronic excitation transfer. To elicit these phenomena, it is necessary to understand the fundamental differences between a variety of optical properties deriving from dispersion interactions, and processes such as resonance energy transfer that occur under laser irradiance. This helps dispel some confusion in the recent literature. By developing and interpreting the theory at a deeper level, one can anticipate that in suitable systems, light absorption and energy transfer will be accompanied by significant displacements in interparticle separation, leading to nanoscale mechanical motion

    An ALMA 3mm continuum census of Westerlund 1

    Get PDF
    Context. Massive stars play an important role in both cluster and galactic evolution and the rate at which they lose mass is a key driver of both their own evolution and their interaction with the environment up to and including their terminal SNe explosions. Young massive clusters provide an ideal opportunity to study a co-eval population of massive stars, where both their individual properties and the interaction with their environment can be studied in detail. Aims. We aim to study the constituent stars of the Galactic cluster Westerlund 1 in order to determine mass-loss rates for the diverse post-main sequence population of massive stars. Methods. To accomplish this we made 3mm continuum observations with the Atacama Large Millimetre/submillimetre Array. Results. We detected emission from 50 stars in Westerlund 1, comprising all 21 Wolf-Rayets within the field of view, plus eight cool and 21 OB super-/hypergiants. Emission nebulae were associated with a number of the cool hypergiants while, unexpectedly, a number of hot stars also appear spatially resolved. Conclusions. We were able to measure the mass-loss rates for a unique population of massive post-main sequence stars at every stage of evolution, confirming a significant increase as stars transitioned from OB supergiant to WR states via LBV and/or cool hypergiant phases. Fortuitously, the range of spectral types exhibited by the OB supergiants provides a critical test of radiatively-driven wind theory and in particular the reality of the bi-stability jump. The extreme mass-loss rate inferred for the interacting binary Wd1-9 in comparison to other cluster members confirmed the key role binarity plays in massive stellar evolution. The presence of compact nebulae around a number of OB and WR stars is unexpected; by analogy to the cool super-/hypergiants we attribute this to confinement and sculpting of the stellar wind via interaction with the intra-cluster medium/wind. Given the morphology of core collapse SNe depend on the nature of the pre-explosion circumstellar environment, if this hypothesis is correct then the properties of the explosion depend not just on the progenitor, but also the environment in which it is located

    A model for conservative chaos constructed from multi-component Bose-Einstein condensates with a trap in 2 dimensions

    Full text link
    To show a mechanism leading to the breakdown of a particle picture for the multi-component Bose-Einstein condensates(BECs) with a harmonic trap in high dimensions, we investigate the corresponding 2-dd nonlinear Schr{\"o}dinger equation (Gross-Pitaevskii equation) with use of a modified variational principle. A molecule of two identical Gaussian wavepackets has two degrees of freedom(DFs), the separation of center-of-masses and the wavepacket width. Without the inter-component interaction(ICI) these DFs show independent regular oscillations with the degenerate eigen-frequencies. The inclusion of ICI strongly mixes these DFs, generating a fat mode that breaks a particle picture, which however can be recovered by introducing a time-periodic ICI with zero average. In case of the molecule of three wavepackets for a three-component BEC, the increase of amplitude of ICI yields a transition from regular to chaotic oscillations in the wavepacket breathing.Comment: 5 pages, 4 figure

    The evolution and development of visual perspective taking

    Get PDF
    I outline three conceptions of seeing that a creature might possess: ‘the headlamp conception,’ which involves an understanding of the causal connections between gazing at an object, certain mental states, and behavior; ‘the stage lights conception,’ which involves an understanding of the selective nature of visual attention; and seeing-as. I argue that infants and various nonhumans possess the headlamp conception. There is also evidence that chimpanzees and 3-year-old children have some grasp of seeing-as. However, due to a dearth of studies, there is no evidence that infants or nonhumans possess the stage lights conception of seeing. I outline the kinds of experiments that are needed, and what we stand to learn about the evolution and development of perspective taking

    Ground State of the Quantum Symmetric Finite Size XXZ Spin Chain with Anisotropy Parameter Δ=1/2\Delta = {1/2}

    Full text link
    We find an analytic solution of the Bethe Ansatz equations (BAE) for the special case of a finite XXZ spin chain with free boundary conditions and with a complex surface field which provides for Uq(sl(2))U_q(sl(2)) symmetry of the Hamiltonian. More precisely, we find one nontrivial solution, corresponding to the ground state of the system with anisotropy parameter Δ=1/2\Delta = {1/2} corresponding to q3=−1q^3 = -1.Comment: 6 page

    Elaborations on the String Dual to N=1 SQCD

    Full text link
    In this paper we make further refinements to the duality proposed between N=1 SQCD and certain string (supergravity plus branes) backgrounds, working in the regime of comparable large number of colors and flavors. Using the string theory solutions, we predict different field theory observables and phenomena like Seiberg duality, gauge coupling and its running, the behavior of Wilson and 't Hooft loops, anomalous dimensions of the quark superfields, quartic superpotential coupling and its running, continuous and discrete anomaly matching. We also give evidence for the smooth interpolation between higgsed and confining vacua. We provide several matchings between field theory and string theory computations.Comment: 44 pages, 6 figures. References added, minor rewritings, published versio

    Detection of vorticity in Bose-Einstein condensed gases by matter-wave interference

    Full text link
    A phase-slip in the fringes of an interference pattern is an unmistakable characteristic of vorticity. We show dramatic two-dimensional simulations of interference between expanding condensate clouds with and without vorticity. In this way, vortices may be detected even when the core itself cannot be resolved.Comment: 3 pages, RevTeX, plus 6 PostScript figure

    Condensation Transitions in a One-Dimensional Zero-Range Process with a Single Defect Site

    Full text link
    Condensation occurs in nonequilibrium steady states when a finite fraction of particles in the system occupies a single lattice site. We study condensation transitions in a one-dimensional zero-range process with a single defect site. The system is analysed in the grand canonical and canonical ensembles and the two are contrasted. Two distinct condensation mechanisms are found in the grand canonical ensemble. Discrepancies between the infinite and large but finite systems' particle current versus particle density diagrams are investigated and an explanation for how the finite current goes above a maximum value predicted for infinite systems is found in the canonical ensemble.Comment: 18 pages, 4 figures, revtex
    • 

    corecore