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ABSTRACT

Context. Massive stars play an important role in both cluster and galactic evolution and the rate at which they lose mass is a key driver
of both their own evolution and their interaction with the environment up to and including their terminal SNe explosions. Young
massive clusters provide an ideal opportunity to study a co-eval population of massive stars, where both their individual properties
and the interaction with their environment can be studied in detail.
Aims. We aim to study the constituent stars of the Galactic cluster Westerlund 1 in order to determine mass-loss rates for the diverse
post-main sequence population of massive stars.
Methods. To accomplish this we made 3mm continuum observations with the Atacama Large Millimetre/submillimetre Array.
Results. We detected emission from 50 stars in Westerlund 1, comprising all 21 Wolf-Rayets within the field of view, plus eight
cool and 21 OB super-/hypergiants. Emission nebulae were associated with a number of the cool hypergiants while, unexpectedly, a
number of hot stars also appear spatially resolved.
Conclusions. We were able to measure the mass-loss rates for a unique population of massive post-main sequence stars at every
stage of evolution, confirming a significant increase as stars transitioned from OB supergiant to WR states via LBV and/or cool
hypergiant phases. Fortuitously, the range of spectral types exhibited by the OB supergiants provides a critical test of radiatively-
driven wind theory and in particular the reality of the bi-stability jump. The extreme mass-loss rate inferred for the interacting binary
Wd1-9 in comparison to other cluster members confirmed the key role binarity plays in massive stellar evolution. The presence of
compact nebulae around a number of OB and WR stars is unexpected; by analogy to the cool super-/hypergiants we attribute this
to confinement and sculpting of the stellar wind via interaction with the intra-cluster medium/wind. Given the morphology of core
collapse SNe depend on the nature of the pre-explosion circumstellar environment, if this hypothesis is correct then the properties of
the explosion depend not just on the progenitor, but also the environment in which it is located.

Key words. stars:evolution - stars:early type - stars:binary

1. Introduction

Despite their rarity, massive (> 20 M�) stars are major agents
of galactic evolution via the deposition of chemically enriched
material, mechanical energy and ionising radiation, while dom-
inating integrated galactic spectra in the UV and IR windows
(the latter via re-radiation by hot dust). Despite this central role
in galactic astrophysics, their short lives are poorly understood
in comparison to stars such as the Sun. Unlike lower-mass stars,
heavy mass-loss has long been recognised as a critical factor,
along with rotation and the presence (or otherwise) of mag-
netic fields, in governing their evolutionary pathway (Ekström
et al. 2012) and the nature of their demise, core-collapse or pair-
production supernova (SN), Gamma-ray burst or prompt, quiet
collapse to black hole (BH). As might be anticipated from this,
the nature of the stellar corpse, either neutron star or BH, is in-
timately related to the pre-demise mass-loss history, which is
of particular interest given the detection of gravitational waves
from coalescing black holes (Abbott et al. 2016).

For single stars it has long been thought that line-driven ra-
diative winds serve as the mechanism by which massive stars

lose mass. Unfortunately, recent studies have reported observa-
tionally derived mass-loss rates of OB stars which are discordant
by up to a factor of 10 (e.g. Puls et al. 2006; Massa et al. 2003;
Fullerton et al. 2006; Sundqvist et al. 2011), due to uncertain-
ties related to the degree of structure (’clumping’) present in O
and B star winds (e.g. Prinja et al. 2010; Prinja & Massa 2013;
Sundqvist et al. 2011; Šurlan et al. 2012). In order to empha-
sise the far-ranging consequences of this ambiguity, we high-
light that it is no longer clear that radiatively-driven winds are
able to drive sufficient mass-loss to transition from H-rich main
sequence (MS) to H-depleted post-MS Wolf Rayet (WR) star.
A popular supposition is that the consequent mass-loss deficit
is made up by the short-lived transitional phase between these
evolutionary extremes. Observations of ejection nebulae associ-
ated with both hot (luminous blue variable; LBV) and cool (yel-
low hypergiant and red supergiant; YHG and RSG) transitional
stars imply phases of instability in which extreme, impulsive
mass-loss may occur (Ṁ≥ 10−4 M�yr−1). However it is not clear
which stars encounter such instabilities, nor whether the dura-
tion of this phase is sufficient to strip away the H-rich mantle to
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permit the formation of WRs. Observations of apparently ‘quies-
cent’ LBVs show that they support dense winds with mass-loss
rates comparable to WRs (Clark et al. 2014b) outside of erup-
tion. However direct mass-loss rate determinations for very lu-
minous cool transitional stars are few and far between (de Jager
et al. 1988); a critical weakness of current stellar evolutionary
codes (e.g. Ekström et al. 2012).

An alternative evolutionary channel has been suggested by
the recent recognition that ∼ 70% of massive stars are found
within binary systems (de Mink et al. 2014; Sana et al. 2012,
2013). Interaction between both components may lead to ex-
treme mass-loss from the primary (e.g. Petrovic et al. 2005),
allowing for the formation of WRs and favouring the production
of NSs over BHs (e.g. Ritchie et al. 2010), while the mass gain-
ing undergoes rejuvenation. In extreme cases binary merger my
also lead to the production of a massive blue straggler.

In both mass transfer and merger scenarios for binary evo-
lution, substantial modification of the stellar initial mass func-
tion may be anticipated, while binary merger may provide a vi-
able formation route for very massive stars (> 100M�; Schnei-
der et al. 2014, 2015). Moreover, even outside of evolution-
ary phases dominated by thermal- and nuclear-timescale mass-
transfer, massive binaries provide valuable insights of the prop-
erties of stellar winds via observations of the resultant wind col-
lision zones. Indeed both the high energy (thermal) X-ray and
low energy (non-thermal synchrotron) mm/radio emission that
results from shocks within colliding wind binaries (CWBs) pro-
vide additional binary identifiers.

Extending this paradigm, when found within stellar aggre-
gates, the collective action of stellar winds and supernovae (SNe)
yield powerful cluster winds (e.g. Stevens & Hartwell 2003)
that can either disperse or compress their natal giant molecular
clouds, respectively inhibiting or initiating subsequent genera-
tions of star-formation. Moreover, SNe and their interaction with
cluster winds (and the shocks within CWBs) have also been im-
plicated in the production of Galactic cosmic rays and attendant
very high energy γ-ray emission (e.g. Abdalla et al. in press;
Abramowski et al. 2012; Bykov et al. 2015).

Given the above considerations, young massive stellar clus-
ters (YMCs) form ideal laboratories for the study and resolu-
tion of these issues due to their co-eval stellar populations of a
single metallicity. Consequently YMCs have recently received
increased attention as (near-IR) Galactic surveys have yielded
numerous further examples. Discovered over half a century ago,
Westerlund 1 (Wd1; Westerlund 1961) subsequently escaped
detailed investigation due to significant interstellar extinction.
The serendipitous detection of multiple radio sources associated
with cluster members (Clark et al. 1998; Dougherty et al. 2010,
henceforth Do10) sparked renewed observational efforts which
revealed Wd1 to host a uniquely rich and diverse population
of massive stars (Clark & Negueruela 2002; Clark et al. 2005).
Specifically, Wd1 appears to be co-eval and at an age (∼ 5Myr;
Negueruela et al. 2010; Kudryavtseva et al. 2012) where cool su-
pergiants and hypergiants may co-exist with WRs; the uniquely
rich population of both (Clark et al. 2005; Crowther et al. 2006a),
as well as > 100 OB supergiants (Negueruela et al. 2010; Clark
et al. in prep.) makes Wd1 a powerful laboratory for the study of
massive stellar evolution.

As such Wd1 has received attention across the electromag-
netic spectrum from radio (Kothes & Dougherty 2007, Do10),
IR and optical (e.g. Brandner et al. 2008, and refs. above)
through to X-ray (Muno et al. 2006a,b; Clark et al. 2008, hence-
forth Cl08) and higher energies (GeV and TeV; Ohm et al.
2013; Abramowski et al. 2012, respectively). Multi-epoch spec-

troscopic radial velocity (RV) surveys have identified a rich pop-
ulation of binaries (Ritchie et al. 2009a, in prep.), with tailored
modelling of individual systems clearly revealing the influence
of binarity on massive stellar evolution (e.g. Ritchie et al. 2010;
Clark et al. 2011, 2014b).

In order to better understand the nature of the massive sin-
gle and binary stellar populations of Wd1 we undertook Ata-
cama Large Millimetre Array (ALMA) Band 3 (100 GHz) con-
tinuum observations of Wd1 in 2015.The millimetre waveband is
a uniquely powerful diagnostic of mass-loss and, in conjunction
with observations at other wavelengths to constrain the contin-
uum spectral energy distribution (SED), may determine the ra-
dial run of wind clumping via thermal Bremsstrahlung emission
(e.g. Blomme et al. 2003). Moreover, CWBs may be identified
by millimetre-radio observations due to either the presence of a
non-thermal continuum component from synchrotron emission
originating in the wind collision zone, or excess mm emission if
such shocks are optically thick (Pittard 2010, 2011).

Fenech et al. (2017) presented results for the brightest con-
tinuum source within Wd1, the supergiant B[e] star and interact-
ing binary Wd1-9 (Clark et al. 2013). In this paper we present a
census of the remaining 3-mm sources and discuss their associ-
ation with stellar counterparts where appropriate. To enable ease
of comparison to the radio study of Wd1 by Do10, we choose to
mirror the structure of that work in this paper, with departures
where necessary due to novel results or synergies between radio
and mm datasets. Finally, significant work has been undertaken
to establish a distance to Wd1, with most estimates falling be-
tween 4-5 kpc (Clark et al. 2005; Crowther et al. 2006a; Kothes
& Dougherty 2007; Brandner et al. 2008; Negueruela et al. 2010;
Kudryavtseva et al. 2012; Clark et al. in prep.), for the purpose
of this paper we adopt a distance, d = 5 kpc to Wd1.

2. Data acquisition, reduction and analysis

2.1. Observations and imaging

ALMA was used to observe Wd1 on the 30th June and the 1st
July 2015 (Project code: 2013.1.00897.S) covering the central
approximately 3.5 sq. arcmin area with 27 pointings. The obser-
vations were made at a central frequency of ∼100 GHz with a
total usable bandwidth of 7.5 GHz over four spectral windows
centred on 92.5, 97.5, 102.5 & 104.5 GHz respectively. Each
spectral window contains 128 channels with a channel frequency
width of 15.625 MHz (only 120 channels are usable). The ar-
ray consisted of 42 antennas with baselines ranging from 40 to
1500 m and a total on-source integration time per pointing of
242.3 secs (∼4 mins). The data were calibrated using the stan-
dard ALMA pipeline procedures in Common Astronomy Soft-
ware Applications (CASA; pipeline version 4.3.1: r34044) and
included the application of apriori calibration information as
well as flagging of erroneous data. Observations of J1617-5848
were used to perform the phase and bandpass calibration and ob-
servations of Titan and Pallas were used to amplitude calibrate
the data with assumed flux densities of 228.96 and 82.01 mJy
respectively (at 91.495 GHz).

As will be discussed in detail in Sect. 3-6 a number of the de-
tected stars in these observations are resolved. In order to ensure
that this is not the result of potential phase errors in the data asso-
ciated with the pipeline water vapour correction performed, the
data were re-calibrated applying slightly less flagging than in the
original pipeline calibration and also making use of the REM-
CLOUDs package (Maud et al. 2017). This is used to correct for
the effect of any water in the form of fog or clouds present in
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certain weather conditions. As each section of data (30th June
and 1st July) were calibrated independently, we found the addi-
tion of REMCLOUD marginally improved the phase calibration
for the 30th June but made no discernible improvement for data
from the 1st July. We therefore proceeded using re-calibrated
30th June data with REMCLOUD and re-calibrated 1st July data
without REMCLOUD.

Following initial calibration (both with initial and re-
calibrated data), several iterations of phase self-calibration were
applied to the data. At each stage images of the full mosaic field
were produced. A selection of the brightest compact sources
across the field were cleaned to produce the desired model. A
selection of pointings, mainly centred around Wd1-9 were used
with the model by GAINCAL to calculate the calibration solu-
tions. APPLYCAL was then used to apply the corrections to all
pointings. A final round of amplitude and phase calibration was
also performed incorporating information from both Wd1-9 and
Wd1-26 in the model.

The data were initially imaged using the mosaicing and
multi-frequency synthesis functions in the CASA CLEAN soft-
ware. Cleaning was done only on the bright compact compo-
nent of Wd1-9 (which has a flux density of 153 mJy) in order
to subtract this component from the data and limit high dy-
namic range problems in subsequent imaging. The final images
were produced using the mosaicing and multi-scale capabilities
within CLEAN including data from all pointings to produce a
single wide-field map of Wd1 (see Figs. 2 and 3). This utilised
Cotton-Schwab cleaning and natural weighting with scale sizes
set at 1, 14, 12, 37 & 119. The final image has a fitted beam
of 750×570 mas. The final full-field image was primary beam
corrected following cleaning to account for the change in sen-
sitivity across the primary beam (PB). Example images of indi-
vidual sources will be shown in Sect. 4, 5 and 6 and have been
taken directly from the PB-corrected wide-field image. A com-
plete catalogue of images of each source is also included in the
on-line material. For subsequent data analysis, the images were
transferred to the AIPS (Astronomical Image Processing Soft-
ware) environment.

To aid cross-correlation and identification, the absolute as-
trometry of the final images were checked utilising the 8.6 GHz
radio image and the FORS R-band image (which had previously
been aligned to the radio image) as presented in Do10. Following
the procedure from Do10, we determined any offset between the
ALMA and FORS image by first using the AIPS task HGEOM
to make the geometry of the two images consistent and then per-
forming a Gaussian fit (using the AIPS task JMFIT) to the com-
pact component of Wd1-9 in both images. A comparison of the
fitted peak positions revealed a small offset between the images.
As we performed self-calibration on the ALMA data, which
causes absolute positional information to be lost, we chose to
shift the ALMA image in order to bring the peak positions of
Wd1-9 (as determined by the Gaussian fit) into alignment. The
aligned FORS and ALMA images are presented in Fig. 2, the
ALMA image showing identified stellar sources is shown in Fig.
3 and the ALMA and radio 8.6 GHz image is shown in Fig. 4.
Both the original image and the primary-beam corrected image
were shifted in this way and used for performing all subsequent
analysis.

2.2. Identification of 3 mm stars

In order to identify and catalogue the sources present in Wd1,
the SEAC source extraction software was used (see Peck 2014;
Morford et al. 2017, for further details). This utilises a flood-

Table 1: Summary of source categories and type detected in the
ALMA 3-mm observations.

Category Source number

ALMA only 51

ALMA+optical only 30

ALMA+optical+radio 20

Total 101

Wolf Rayets 21

YHGs 4

RSGs 4

BHGs 3

LBV 1

sgB[e] 1

OB supergiants 16

Total 50

Notes. N.B. seven of the ALMA-only sources are associated with the
extended nebulae of Wd1-4 and Wd1-20, see Sect. 3.1 for details.

fill algorithm to search the map and identify discrete ‘islands’ of
emission by locating pixels above a given (seed) threshold and
subsequently adding neighbouring pixels to the ‘island’ down
to a lower (flood) threshold. Thresholds of 5σ and 3σ were
set for the initial use of SEAC on the ALMA wide-field image,
where σ is a regionalised noise level calculated by determining
the rms level in individual cells of a 6×6 grid across the whole
image. This was necessary to account for the change in noise
level across the image especially towards the strong emission
from Wd1-26 and Wd1-9. SEAC was used on both the origi-
nal and primary-beam corrected images. Sources determined by
SEAC with a seed threshold of 5σ in the original image (i.e. not
primary beam corrected) are considered as detections.

This resulted in the detection of 98 sources in the Wd1
field. These detections were cross-correlated with previously
published catalogues (including Clark et al. 2005; Crowther et al.
2006a; Negueruela et al. 2010, ;Do10 and Cl08 as well as the
VPHAS point sources catalogue for the region) in order to iden-
tify the observed sources. Following this cross-correlation pro-
cess, the sources identified at 3 mm fall broadly into three cate-
gories; those that are previously known and identified at multiple
wavelengths including optical and radio, those that are detected
in the radio observations from Do10 though have no other coun-
terparts and those that are detected only in these ALMA observa-
tions. Table 1 lists a summary of the number of sources detected
at 3 mm within these categories along with those for relevant
stellar spectral types where possible.

There are also a number of optically identified sources that
do not appear in these ALMA images. In particular there are sev-
eral sources that have the same or similar spectral classifications
to those that have been detected. In order to attempt to locate
any weak emission from these sources, further SEAC runs were
performed with seed thresholds of 4.5 and 4σ. This identified
a further three sources albeit with lower detection thresholds,
which have also been included in the final source list. The total
3 mm catalogue list therefore contains 101 sources. Each source
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Fig. 1: An example output of source W243 from the Gaussian fitting process to the sources in the ALMA observations. Left panel
in 3D shows the image information in colour-scale with the resulting fit overlaid as a wire-frame. Right shows the image data in the
bottom panel and the Gaussian fit in the top panel.

has been given an ALMA 3 mm catalogue number, designated
as FCP18, in order of right ascension. All information for these
sources is contained in Tables 2 and 3 for the stellar sources and
Table A.1 for the ALMA-only sources.

3. The millimetre emission in Wd1

The millimetre emission observed in Wd1 shows both distinct
isolated sources as well as more extended regions of diffuse
emission which broadly coincide with similar regions seen in
the radio images (see Fig. 4).

3.1. 3-mm star characteristics

Of the total 101 objects detected in these observations, 50 have
been identified as stellar sources that have previously observed
optical and/or radio counterparts. Their identification, flux den-
sity as measured from the primary-beam corrected image along-
side the radio-mm spectral index are presented in Table 2. In
addition to SEAC, Gaussian fitting was performed on each of
the sources (see Sect. 3.1.1). The flux densities presented are
either those taken from the Gaussian fitting (for unresolved
or Gaussian-like sources) or the integrated flux density of the
source ‘island’ returned by SEAC. The errors on the flux den-
sity are those from calculating the integrated flux density (ei-
ther returned from the Gaussian-fitting or SEAC) and the ex-
pected absolute amplitude calibration error for ALMA which is
taken to be 5% (see ALMA Cycle 2 Technical Handbook) com-
bined in quadrature. For sources with a clearly defined compact
component with extended structure, flux densities and where
possible spectral indices have been provided for both the com-
pact and extended components separately. Radio observations
have shown extended nebulae associated with several sources
including Wd1-4 and Wd1-20. This extended emission appears
in some cases as multiple components within these higher res-
olution ALMA images presented here. In particular, four of the
FCP18 catalogue sources are part of the diffuse extended emis-
sion associated with the nebula of Wd1-20 identified by compar-
ison with the radio emission, as well as three sources which are
associated with the nebula of Wd1-4. These components have
been listed individually in the final catalogue (Table A.1) for

completeness. However they have been treated as part of Wd1-4
and Wd1-20 for calculating both flux densities and spatial extent.

3.1.1. Spatial resolution

A large number of the stellar sources appear to be resolved and
in order to determine their spatial extent two approaches were
used. Primarily a Gaussian fit was performed using the AIPS
task JMFIT. Estimates of the peak flux density and position from
SEAC were used and only pixels >3 times the rms local to the
source were included in the fit. Three dimensional plots of the
source structure and the resulting model fit were used to visu-
ally assess the fit (an example of which can be seen in Fig. 1).
The final convolved and deconvolved source sizes are presented
in Table 3 which lists the spatial information for each source,
including the positional offset from the observed ALMA peak
to the catalogued source position taken from the literature (see
the caption of Table 3 for details). Where the Gaussian fit was
deemed unreasonable i.e. when the source structure was dis-
tinctly non-Gaussian, a largest angular size (LAS) was measured
and is listed in Table 3 (the LAS sizes are not deconvolved). The
IRING AIPS task was also used to perform integrated annular
profiles of each source centred on the position of the peak bright-
ness. The errors included for source sizes measured using Gaus-
sian fitting are those directly returned by the fitting procedure.
For the convolved sizes, these represent the errors calculated in
the fit. For the deconvolved sizes the errors represent the po-
tential minimum to maximum range the deconvolved size could
have (based on the convolved size errors), as a result of subtract-
ing the image restoring beam, and therefore likely overestimate
the true error.

A total of 27 of the stellar sources have been determined to be
resolved i.e. have sizes larger than the image restoring beam and
have convolved and deconvolved sizes listed in Table 3. A fur-
ther 17 appear to be partially resolved (i.e. those that have only
one dimension deconvolved listed in Table 3), while the remain-
ing 7 sources are unresolved. The sources which are partially
or fully resolved separate into two main categories: those that
appear point-like i.e. are generally representable by a Gaussian
and those that have extended nebular emission. The former in-
clude stars of every spectral type found within the cluster. Given
that they are in general relatively faint detections, the errors as-
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sociated with the WRs and OB super-/hypergiants are systemat-
ically larger in relation to source size than those associated with
the cool super-/hypergiants. Despite this, the majority of WRs
and OB super-/hypergiants appear extended, with objects such
as Wd1-243 (LBV; Sect. 6.2) and WR A and L (Sect. 4) robustly
so and hence serving as exemplars. The latter mainly appear to
be extended nebulae associated with the cool hypergiants e.g.
Wd1-26.

One final feature of note is that a number of compact sources
for which it is possible to fit a gaussian appear to show ex-
cess emission in the shoulders of their profiles (see Fig. 7 and
Sect. 4.2.3). This is clearly present in the profiles of the compact
sources associated with the YHGs Wd1-4, -12a and 16a but also
fainter sources such as those associated with e.g. WR D, J, K and
Q, albeit with less confidence.

We defer discussion of these sources for subsequent sections,
where their extent can be compared to predictions derived from
their varied wind properties as well as the properties of ejection
nebulae associated with other examples.

Comparison of the mm and radio flux densities of those
sources associated with the extended emission reveal an apparent
flux density deficit in our ALMA observations if, as suggested by
the radio observations, the emission mechanism is optically-thin
free-free from ionised circumstellar ejecta. This strongly sug-
gests that some of the mm emission has been resolved out i.e.
occupies larger spatial scales than those effectively sampled by
ALMA during these observations. As a result we refrain from
determining ionised ejecta masses for these sources, favouring
the estimates presented in Do10.

3.1.2. Spectral indices

Where possible the spectral index between the 8.6 GHz (3.6 cm)
radio and 3 mm ALMA flux densities are presented in Table 2.
The majority of stellar sources appear to have spectral indices
consistent with partially optically-thick free-free emission. How-
ever a number appear to show flatter or inverted spectral indices.
The divergence of the spectral index from the canonical value
of α = 0.6 expected for a partially optically-thick wind (Wright
& Barlow 1975) can occur from a number of reasons, such as
changes in the run of ionisation or wind geometry with radius, or
the presence of both optically-thick and thin components (such
as optically-thick clumps in a structured wind; Ignace & Church-
well 2004). In long-period (Porb & 1yr) colliding wind binaries,
an additional non-thermal component caused by wind interac-
tion outside the respective radio/mm photospheres can lead to
a reduction or flattening of the spectral index (e.g. Chapman
et al. 1999, Do10). Conversely, in more compact binaries ther-
mal emission from material in the wind collision region (WCR)
may come to dominate the spectrum at mm or radio wavelengths
(Stevens 1995; Pittard et al. 2006; Pittard 2010; Montes et al.
2015). For instance, optically-thin thermal emission (α ∼ −0.1)
from an adiabatic WCR may dominate emission at long (cm)
wavelengths, leading to a flatter than expected spectrum (Pittard
et al. 2006). Alternatively, for shorter period systems, cooling of
material in the WCR becomes increasingly important (Stevens
et al. 1992) leading to optically-thick thermal emission (Pittard
2010) which could dominate the spectrum at mm wavelengths,
resulting in a steeper mm-radio continuum spectral index.

For all eventualities it is important to recall that the time-
dependent line of sight through the complex geometry of the
WCR and stellar winds imposed by orbital motion may also be
reflected in variability in the spectral index. This is of particular
concern for very compact (contact) binaries in which interac-

tions occur before appreciable wind acceleration, where compu-
tational limitations preclude accurate modelling of the resultant
wind and the WCR geometries and interactions, and hence quan-
titative predictions for the emergent spectrum.

3.1.3. Mass-loss determination

There is considerable advantage to using free-free mm/radio
fluxes for determining mass-loss for massive stars in that, un-
like Hα and UV, the emission due to electron-ion interactions
in their ionised winds arises at large radii, where the terminal
velocity will have been reached. Therefore the interpretation of
the mm/radio flux densities is more straightforward and is not
strongly dependent on details of the velocity law, ionization con-
ditions, inner velocity field, or the photospheric profile. Though
the greater geometric region and density squared dependence of
the free-free flux makes these continuum observations sensitive
to clumping in the wind, there is evidence that clumping de-
creases in the outer wind regions (e.g. Runacres & Owocki 2002;
Puls et al. 2006).

The mass-loss rate is related to the observed free-free emitted
radiation as

S ν = 2.32x104

 Ṁ
√

fcl

µv∞

4/3
1

D2

(
γg f f νZ2

)2/3
, (1)

where, Sν is our observed radio flux in mJy measured at fre-
quency ν in Hz; Ṁ is in M�yr−1; the terminal velocity v∞ is in
kms−1; D is the distance in kpc (see e.g. Wright & Barlow 1975).
The quantities µ, Z, and γ are the mean molecular weight per ion,
ratio of electron to ion density, and mean number of electrons per
ion. The Gaunt factor, g f f , can be approximated by

g f f ≈ 9.77
(
1 + 0.13 log

(
T 3/2

e /ν

√
(Z2)

))
, (2)

(e.g. Leitherer & Robert 1991).
Since the free-free emission process depends on the density-

squared, it is affected by wind clumping. Equation 1 includes a
simple account of this, such that all clumps are assumed to have
the same clumping factor given by fcl = < ρ2 > /< ρ >2, where
the angle brackets indicate an average over the volume in which
continuum emission is formed. A given flux can therefore be in-
terpreted as a certain mass-loss rate for a smooth wind ( fcl = 1),
or correspondingly as a lower mass-loss rate in a clumped wind
( fcl > 1). Note, with an assumption of no inter-clump material,
fcl here is related to the reciprocal of the volume filling factor.
Regarding the remaining terms in the above relations we adopt
Te = 0.5 Te f f (e.g. Drew 1989) and that for OB stars hydrogen
is fully ionised, He+ dominates over He2+, and a helium abun-
dance of nHe/nH = 0.1 (i.e. µ ∼ 1.4, Z = 1, γ = 1). We note that
for hot stars the dominant H ionization stage is controlled es-
sentially by the wind density through mass-loss rate and clump-
ing. However in the case of strong clumping in the mm forma-
tion region, recombination would be enhanced and thus favour
He+. For the chemistry of the WR star winds we have adopted
here the following generalisation for µ based on Leitherer et al.
(1997); µ = 4.0 for WN6 and earlier types; µ = 2.0 for later-type
than WN6; µ = 4.7 for WC8 and WC9. Once more, He+ is as-
sumed to be the most prevalent in the WR mm-emitting region
and we have assumed Z = 1 and γ = 1. Following Leitherer et al.
(1995) we assume the B hypergiant (Ia+) candidates in Wd 1 to
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Table 2: ALMA 3-mm flux densities of the known stars detected in these observations.

Source RA Dec Flux density (mJy) α Sp. Type Comments
J2000 J2000 3 mm 3.6 cm radio 3 mm-3.6 cm

WR stars and hybrids
WR J 47 2.472 50 59.976 0.18± 0.04 - - >0.03 WN5h No RV data, NoB

WR R 47 6.090 50 22.535 0.35± 0.07 - - >0.30 WN5o No RV data, X-ray sug-
gests binary

WR O 47 7.651 52 36.182 0.48± 0.06 - - >0.42 WN6o X-ray suggests binary
WR U 47 6.538 50 39.184 0.40± 0.05 - - >0.35 WN6o X-ray suggests binary
WR Q 46 55.528 51 34.608 0.40± 0.06 - - >0.35 WN6o No RV data, NoB
WR A 47 8.347 50 45.571 3.98± 0.21 0.50± 0.06 0.00± 0.04 0.85 WN7b+OB? 7.63d binary
WR D 47 6.245 51 26.525 0.76± 0.07 - - >0.61 WN7o X-ray suggests CWB

WR B 47 5.367 51 5.016 1.82± 0.12c >-0.35c
WN7o+OB? 3.52d binary

3.40± 0.17t 4.30± 0.04t +0.04± 0.07t -0.10± 0.02t

WR G 47 4.005 51 25.176 0.83± 0.07 - - >0.65 WN7o X-ray suggests CWB
WR P 47 1.584 51 45.425 0.68± 0.06 - - >0.57 WN7o No RV data, NoB
WR I 47 0.878 51 20.674 2.16± 0.12 - - >1.04 WN8o No RV data, NoB
WR V 47 3.799 50 38.916 1.25± 0.08 0.40± 0.06 0.00± 0.50 0.46± 0.07 WN8o No RV data, NoB
WR L 47 4.195 51 7.356 3.65± 0.19 0.40± 0.06 >0.5 0.90± 0.07 WN9h+OB? RV binary
WR S 47 2.972 50 19.836 0.51± 0.06 0.30± 0.06 >0.0 0.22± 0.10 WN10-

11h/BHG
Runaway, single

W13 47 6.451 50 26.224 0.37± 0.05 - - >0.32 WNVL/BHG Eclipsing binary

WR K 47 3.230 50 43.956 0.32± 0.06 - - >0.25 WC8 Not obvious binary
(NoB)

WR E 47 6.048 52 8.465 0.91± 0.07 - - >0.69 WC9 RV variable 10-20 km/s
WR F 47 5.203 52 25.116 1.44± 0.09 0.30± 0.06 +0.66± 0.09 0.64± 0.09 WC9d+OB? 5.05d Binary

WR C 47 4.402 51 3.756 0.39± 0.05 - - >0.34 WC9d Dust production sug-
gests binary

WR H 47 4.204 51 19.956 0.49± 0.06 - - >0.43 WC9d Dust suggests binary

WR M 47 3.954 51 37.776 0.55± 0.06 - - >0.48 WC9d RV shift suggests bi-
nary

Yellow hypergiants and red supergiants

W16a 47 6.607 50 42.334 0.69± 0.07c - - >-0.34c
A5Ia+

1.46± 0.15t 1.60± 0.30t -0.33± 0.09t -0.04± 0.09t

W12a 47 2.205 50 59.166 1.00± 0.10c - - >-0.44c
F1Ia+

1.63± 0.14t 2.90± 0.30t -0.06± 0.08t -0.23± 0.06t

W4 47 1.422 50 37.385 1.66± 0.11c 0.78± 0.07c 0.49± 0.31c 0.30± 0.05c F3Ia+

2.03± 0.25r 0.80± 0.08r -0.23± 0.07r 0.00± 0.07r

W32 47 3.678 50 43.686 0.38± 0.07 0.40± 0.06 0.00± 0.05 -0.03± 0.10 F5Ia+

W237 47 3.101 52 19.086 - 1.80± 0.20c -0.06± 0.10c - M3Ia
1.60± 0.14t 7.40± 2.21t -0.35± 0.19t -0.05± 0.14t

W75 47 8.914 49 58.589 0.45± 0.07 0.30± 0.06 >0.0 0.16± 0.11 M4Ia

W20 47 4.686 51 24.096 1.45± 0.11c - - >0.00c
M5Ia

3.66± 0.19t 3.80± 0.40t -0.11± 0.07t -0.02± 0.05t

W26 47 5.375 50 36.486 114.75± 5.76 20.10± 2.00 0.07± 0.11 0.71± 0.05 M5-6Ia
Blue hypergiants, LBVs, OB supergiants and the sgB[e] star
W25 47 5.831 50 33.785 0.18± 0.01 - - >0.01 O9Iab Faint X-ray, no RV data
W17 47 6.167 50 49.355 0.75± 0.04 1.70± 0.20 -0.42± 0.11 -0.33± 0.06 09.5Ia Faint X-ray, no RV data

W43a 47 3.549 50 57.816 0.17± 0.05 - - >0.01 B0Ia 16.27d binary from RV
shifts

W61a 47 2.300 51 41.826 0.10± 0.05 - - >-0.22 B0.5Ia No RV data, NoB, 4.5σ
W46a 47 3.911 51 19.866 0.35± 0.06 - - >0.30 B1Ia No RV data, NoB
W56a 46 58.939 51 49.110 0.11± 0.05 - - >-0.18 B1.5Ia No RV data, NoB

W52 47 1.843 51 29.495 0.11± 0.05 - - >-0.16 B1.5Ia 6.7d ellipsoidal modu-
lation

W8b 47 4.953 50 26.856 0.15± 0.05 - - >-0.06 B1.5Ia No RV data, NoB
W243 47 7.496 52 29.252 9.96± 0.50 1.50± 0.20 0.87± 0.30 0.77± 0.13 B2Ia (LBV) RV pulsator, NoB

Notes. 3.6 cm flux densities and spectral indices taken from Do10 are also listed. Radio to mm spectral indices have been calculated using the
total flux density unless both core and resolved components are separated in both the radio and ALMA images. Where no flux density is reported
for a source in D010, we find a limiting spectral index based on a 3.6 cm flux density limit of 170µJy beam−1 (see Do10 for details). Spectral type
identifications have been taken from Crowther et al. (2006a) for WR stars, Clark et al. (2010) for the YHGs and RSGs, Negueruela et al. (2010)
for the OB stars and Do10 for the two D09 sources.(t) total flux density , (c) core component flux density , (r) resolved flux density (not including
core component)
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Table 2 — continued

Source RA Dec Flux density (mJy) α Sp. Type Comments
J2000 J2000 3 mm 3.6 cm radio 3 mm-3.6 cm

Blue hypergiants, LBVs, OB supergiants and the sgB[e] star
W28 47 4.660 50 38.646 0.20± 0.05 - - >0.07 B2Ia No RV data, NoB
W2a 46 59.707 50 51.332 0.12± 0.05 - - >-0.16 B2Ia RV pulsator, NoB, 4.5σ

W11 47 2.231 50 47.286 0.11± 0.05 - - >-0.19 B2Ia No RV data or X-ray
detection, 4.5σ

W23a 47 2.567 51 9.066 0.23± 0.05 - - >0.12 B2Ia+OB RV data, NoB
W71 47 8.450 50 49.530 0.27± 0.07 - - >0.19 B2.5Ia RV pulsator, NoB
W33 47 4.117 50 48.636 0.23± 0.05 - - >0.13 B5Ia+ No RV data, NoB
W7 47 3.618 50 14.526 0.37± 0.05 - - >0.31 B5Ia+ RV pulsator, NoB
W42a 47 3.239 50 52.326 0.25± 0.06 - - >0.16 B9Ia+ No RV data, NoB

W9 47 4.140 50 31.430 152.92± 0.08c 24.90± 2.50c 0.68± 0.70c 0.74± 0.04c
SgB[e] X-ray suggests CWB

16.15± 0.90r 30.50± 3.00r 0.16± 0.17r -0.26± 0.05r

D09-R1 47 9.071 51 10.139 1.05± 0.12 0.70± 0.07c -0.23± 0.27c
0.17± 0.09t BSG

6.5± 1.2r -0.61± 0.11r

D09-R2 47 6.908 50 37.204 0.68± 0.08 0.70± 0.06 -0.43± 0.11 -0.01± 0.06 BSG
W30 47 4.117 50 39.456 0.17± 0.06 - - >0.00 O+O X-ray suggests CWB

have a chemical composition akin to LBVs and adopt µ = 1.6,
γ=0.8 and Z=0.9. For the fundamental stellar parameters (Te f f ,
terminal velocity v∞) we have adopted the (observational) com-
pilations of Crowther et al. (2006b) and Searle et al. (2008) for
B0-B5 supergiants; Crowther (2007) and Sander et al. (2012) for
WN stars; and Sander et al. (2012) for WC stars.

Our mass-loss estimates assume the mm fluxes are not af-
fected by binarity, either via synchrotron emission and/or en-
hanced thermal emission from a (strongly radiative) WCR (e.g.
Pittard 2010). After excluding two sources with spectral indices
strongly indicative of non-thermal emission we present the resul-
tant mass-loss rates for a total of 27 stars in Table 4 and further
discuss these in the following sections.

3.2. Mm sources lacking counterparts

The remaining 51 detected sources which have no catalogued
optical or radio counterpart are listed in Table A.1. Their posi-
tions in Wd1 are shown in Fig. B.2 and images of each source
are available in the online material. Seven of these sources have
been determined to be knots of emission associated with the
extended nebulae of Wd1-4 and Wd1-20. Of the 44 >5σ de-
tected sources that are unique to these data, at least five ap-
pear to be obviously associated with extended emission, in most
cases these are clearly low surface-brightness areas with brighter
points of emission accounting for the source detections. A fur-
ther 31 sources are more identifiable as potential sources appear-
ing as well-defined components within diffuse mm emission.
However, it is not possible from these observations alone to de-
termine if they are for example stellar sources or again merely
brighter components of the more diffuse emission. Five of the
ALMA-only sources with no previous counterpart do appear to
be bright discrete sources in isolation and not associated with
any diffuse emission.

Large surveys of the background galaxy population at mm
wavelengths are now making use of high sensitivity observations
to probe the faint source population. Whilst some of these sur-
veys are performed at 3-mm (100 GHz), they tend to be less sen-
sitive (e.g. Mocanu et al. 2013, use observations at 95, 150 and
220 GHz though only probe down to ∼4 mJy). The vast majority
utilise observations at 1.1-1.3 mm and the most sensitive of these
using ALMA Band 6 or 7 (e.g. Ono et al. 2014; Carniani et al.

2015; Oteo et al. 2016; Hatsukade et al. 2016). Using the cumu-
lative source counts from these surveys, it is however possible to
estimate the number of background sources expected within the
field observed for Westerlund 1.

Massardi et al. (2016) study the spectral evolution of sources
from mm to radio wavelengths and show that the majority of
the population display a down-turning spectral index with in-
dices ranging from 0 to ∼ −1.8 for the 100-200 GHz fre-
quency range (3-1.5 mm) with an average value around -0.5. The
noise level in the central regions of the Westerlund 1 field is
∼28 µJy beam−1resulting in a 3-σ value of ∼85 µJy beam−1. As-
suming a -0.5 spectral index is representative, this would equate
to ∼ 56 − 51 µJy beam−1at band 6-7. Umehata et al. (2017)
used ALMA and the Aztec camera to measure the cumulative
source counts and find S>0.4 mJy = 9800+5100

−2200deg−2. The obser-
vations of Wd-1 cover an area of approximately 7.3 arcmin2,
providing an estimate of approximately 20 background sources
within our field. Likewise the theoretical models from Hayward
et al. (2013) give SALMA6>0.4 mJy = 6897deg−2, estimating of ∼ 14
sources in the field. Both of these however, lack some of the faint
source population (<0.4 mJy) which should be detectable in our
observations. More recently, Oteo et al. (2016) use ALMA Band
6/7 calibration survey observations to estimate source counts
down to a flux density of 0.20 mJy, equating to 11+10

−9 sources
in our field-of-view above this threshold. They also highlight the
increased level of uncertainty in calculating source counts due to
potential spurious source contamination, when employing lower
detection thresholds often used to probe the fainter source popu-
lation.

Interestingly, Shimizu et al. (2012) use hydrodynamical sim-
ulations to predict the background submillimetre galaxy pop-
ulation and present results for a number of ALMA bands in-
cluding 3, 6 and 7. Their results would predict < 1 background
sources in our field directly at 3-mm. However assuming the pre-
vious correction for spectral index and calculating for Band 6
would instead predict ∼20 background sources for this study.
As discussed in Carniani et al. (2015), without knowing the in-
trinsic spectral energy distribution of the sampled sources (and
their redshift distribution) it is difficult to accurately perform
large extrapolations in flux density. Whilst Mocanu et al. (2013)
have suggested that the 3-mm models under-predict the expected
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Table 3: Spatial information for the 50 identified stellar sources.

Source FCP18 RA Dec Offset Size (arcsecs) Notes
Convolved Deconvolved

arcsecs Major axis Minor axis Major axis Minor axis

WR stars and hybrids
WR J 23 47 2.472 50 59.976 0.13 0.55± 0.07 0.52± 0.07 — — Unresolved
WR R 68 47 6.090 50 22.535 0.21 0.81± 0.10 0.72± 0.09 0.54± 0.23 0.37± 0.32
WR O 84 47 7.651 52 36.182 0.30 0.74± 0.06 0.64± 0.05 0.37± 0.20 0.28± 0.24
WR U 78 47 6.538 50 39.184 0.23 0.63± 0.04 0.51± 0.03 — — Unresolved
WR Q 1 46 55.528 51 34.608 0.46 0.69± 0.06 0.64± 0.06 0.34± 0.25 0.18± 0.21
WR A 88 47 8.347 50 45.571 0.29 0.665± 0.005 0.579± 0.004 0.16± 0.03 0.09± 0.07
WR D 71 47 6.245 51 26.525 0.06 0.69± 0.03 0.58± 0.02 0.23± 0.16 0.13± 0.13

WR B 62 47 5.367 51 5.016 0.07 0.97 0.03 0.75 0.02 0.72± 0.04 0.49± 0.04 Compact
4.43 LAS — — Total

WR G 43 47 4.005 51 25.176 0.05 0.63± 0.02 0.58± 0.02 0.12± 0.11 —
WR P 15 47 1.584 51 45.425 0.10 0.68± 0.03 0.57± 0.03 0.20± 0.15 0.07± 0.12
WR I 10 47 0.878 51 20.674 0.13 0.66± 0.01 0.57± 0.01 0.12± 0.09 —
WR V 38 47 3.799 50 38.916 0.17 0.68± 0.02 0.56± 0.01 0.22± 0.06 —
WR L 47 47 4.195 51 7.356 0.07 0.661± 0.005 0.573± 0.005 0.13± 0.04 0.08± 0.06
WR S 29 47 2.972 50 19.836 0.19 0.63± 0.04 0.57± 0.03 0.18± 0.16 —
W13 76 47 6.451 50 26.224 0.23 0.64± 0.05 0.55± 0.04 0.20± 0.18 —
WR K 31 47 3.230 50 43.956 0.26 0.67± 0.07 0.58± 0.06 0.34± 0.24 —
WR E 67 47 6.048 52 8.465 0.27 0.70± 0.02 0.55± 0.02 0.25± 0.07 —
WR F (239) 61 47 5.203 52 25.116 0.21 0.69± 0.02 0.59± 0.01 0.24± 0.06 0.15± 0.10
WR C 50 47 4.402 51 3.756 0.05 0.59± 0.04 0.54± 0.04 — — Unresolved
WR H 48 47 4.204 51 19.956 0.30 0.66± 0.04 0.58± 0.04 0.21± 0.18 —
WR M (66) 41 47 3.954 51 37.776 0.07 0.70± 0.05 0.66± 0.04 0.34± 0.18 0.26± 0.21
Yellow hypergiants and red supergiants

W16a 79 47 6.607 50 42.334 0.24 0.79± 0.05 0.71± 0.04 0.48± 0.12 0.39± 0.15 Compact
3.61 LAS — — Total

W12a 19 47 2.205 50 59.166 0.37 1.16 ± 0.08 0.77± 0.05 0.97± 0.10 0.52± 0.09 Compact
3.05 LAS — — Total

W4 13 47 1.422 50 37.385 0.29 0.95± 0.04 0.78± 0.02 0.69± 0.05 0.54± 0.04 Compact
5.42 LAS Total

W32 36 47 3.678 50 43.686 0.20 0.89± 0.10 0.63± 0.07 0.61± 0.16 0.25± 0.20
W237 30 47 3.101 52 19.086 0.31 1.18± 0.07 1.10± 0.06 1.02± 0.10 0.89± 0.10
W75 96 47 8.914 49 58.589 0.25 0.85± 0.01 0.71± 0.07 0.56± 0.16 0.41± 0.20

W20 55 47 4.686 51 24.096 0.33 0.98± 0.04 0.78± 0.03 0.74± 0.06 0.53± 0.06 Compact
3.84 LAS — — Total

W26 63 47 5.375 50 36.486 0.26 16.00 LAS — —
Blue hypergiants, LBVs, OB supergiants and the sgB[e] star
W25 65 47 5.831 50 33.785 0.72 1.66 LAS — —
W17 70 47 6.167 50 49.355 0.88 3.37 LAS — —
W43a 33 47 3.549 50 57.816 0.52 0.69± 0.12 0.55± 0.09 0.24± 0.27 —
W61a 21 47 2.300 51 41.826 0.25 0.72± 0.20 0.47± 0.13 0.33± 0.34 —
W46a 40 47 3.911 51 19.866 0.37 0.73± 0.07 0.58± 0.05 0.32± 0.24 0.12± 0.15
W56a 4 46 58.939 51 49.110 0.33 0.62± 0.14 0.52± 0.12 — — Unresolved
W52 17 47 1.843 51 29.495 0.30 0.62± 0.13 0.48± 0.10 — — Unresolved
W8b 58 47 4.953 50 26.856 0.16 0.61± 0.10 0.51± 0.09 — — Unresolved
W243 83 47 7.496 52 29.252 0.94 0.669± 0.002 0.567± 0.002 0.15± 0.01 0.03± 0.03
W28 53 47 4.660 50 38.646 0.25 0.81± 0.12 0.46± 0.07 0.52± 0.21 —
W2a 9 46 59.707 50 51.332 0.23 0.72± 0.18 0.50± 0.12 0.37± 0.34 —
W11 20 47 2.231 50 47.286 0.29 0.72± 0.17 0.45± 0.11 0.34± 0.33 —

Notes. Reference positions used to derive millimetre offsets for each source are those taken from Do10, Crowther et al. (2006a); Clark et al.
(2010); Negueruela et al. (2010) and from the recent FLAMES Wd1 survey Clark et al. (in prep.). As described in Sect. 3.1.1,the acronym ‘LAS’
corresponds to ‘largest angular size’ and is used to report dimensions for non-gaussian sources.

source counts, it is likely that there is also large uncertainty in
predicting the background source counts in this manner.

3.3. Extended continuum emission

There are several areas of low surface brightness emission in
the central region of Wd1. These are spatially coincident with
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Table 3 — continued

Source FCP18 RA Dec Offset Size (arcsecs) Notes
Convolved Deconvolved

arcsecs Major axis Minor axis Major axis Minor axis

Blue hypergiants, LBVs, OB supergiants and the sgB[e] star
W23a 24 47 2.567 51 9.066 0.37 0.60± 0.07 0.58± 0.07 0.18± 0.18 —
W71 89 47 8.450 50 49.530 0.25 0.98± 0.18 0.65± 0.12 0.74± 0.27 0.28± 0.27
W33 44 47 4.117 50 48.636 0.34 0.62± 0.07 0.56± 0.07 0.18± 0.20 —
W7 34 47 3.618 50 14.526 0.33 0.65± 0.05 0.50± 0.04 — — Unresolved
W42a 32 47 3.239 50 52.326 0.25 0.67 0.08 0.59 0.07 0.25± 0.24 —

W9 46 47 4.136 50 31.400 0.35 0.6727± 0.0002 0.5904± 0.0002 0.186± 0.001 0.150± 0.002 Compact
4.50 LAS — — Total

D09-R1 98 47 9.071 51 10.139 0.10 2.44 LAS — —
D09-R2 81 47 6.908 50 37.204 0.43 2.28 LAS — —
W30 45 47 4.117 50 39.456 0.46 0.71± 0.14 0.62± 0.13 0.43± 0.32 —

the extended regions identified in the radio images presented in
Do10 as A1-A8. The higher resolution of these ALMA obser-
vations is ‘resolving-out’ some of the more diffuse emission on
the larger spatial scales. This results in the significantly more
patched or clumped background emission and the breaking down
into more discrete components within these regions seen in the
ALMA images. This is most clearly evident in Fig. 4 where the
3 mm emission (in colour-scale) appears to be associated with
knots of emission in the more extended structures seen in the
radio (blue contours). Five of the extended regions are readily
associated with individual stars namely the RSGs Wd1-20 and
Wd1-26, the BSG D09-R1, the sgB[e] star Wd1-9 and WR B,
with these stars showing as more discrete sources in the ALMA
observations. The remaining three extended regions are not as-
sociated with with any currently known stellar counterpart, how-
ever, several of the ALMA-only sources identified in these ob-
servations are found in these regions. In some cases, such as
around Wd1-20, the ALMA-only sources can be identified as
low brightness diffuse emission associated with the larger neb-
ula. In others such as near WR B, the other ALMA-only sources
appear bright, compact and very similar to the other known stel-
lar sources.

4. The stellar sources I. The Wolf Rayets

A key finding of our survey is that almost half of the 50 3-mm
continuum sources associated with stellar counterparts within
Wd1 are Wolf-Rayet (WR) stars (Table 2); we detect all such
stars within our field-of-view. This is an important result since it
raises the possibility of determining their mass-loss rates. Given
the key role of WR-phase mass-loss in stellar evolution, e.g.
changes in the mass-loss rates by a factor of 2-3 are sufficient to
distinguish between black hole and neutron star formation post-
SN (Nugis & Lamers 2000; Wellstein & Langer 1999), undertak-
ing such a study for a sample of known distance and for which
the properties of the progenitor population may be determined is
particularly attractive.

Understandably, given the above, a number of previous stud-
ies have investigated the mm- and radio-continuum properties
of WR stars. Consequently, in order to place our results in con-
text, we first briefly review prior findings before discussing our
results.

4.1. Previous mm and radio surveys

Abbott et al. (1986, and references therein) provide the first
comprehensive survey of the radio properties of WR stars, pre-
senting a distance (≤3kpc) and declination (δ > −47o) limited
4.9-GHz radio survey of 42 of the 43 stars so selected. They
report 28 detections, with spectral types ranging from WN5-8,
WC4-9 and a single WN/C star. Complementing these data, ra-
dio observations of southern hemisphere WRs were obtained by
Leitherer et al. (1995, 1997); Chapman et al. (1999) who report
16 detections (from 36 targets), with spectral sub-types rang-
ing from WN6h-8h and WC5-81. Cappa et al. (2004) returned
to study WRs north of δ > −46o, detecting 20 of 34 stars and
yielding 16 detections of stars missing from the above studies at
8.46 GHz. Spectral sub-types of detections range from WN5-9h,
WC6-9 and a single example of a WN/WCE transitional star.
Regarding the nature of sources, Abbott et al. (1986) reported
non-thermal emission for ∼ 21% of their detections, Cappa et al.
(2004) 30% and Leitherer et al. (1995, 1997); Chapman et al.
(1999) at least 40% of their sample. Trivially, while the percent-
age of non-thermal emitters at radio wavelengths appears sig-
nificant, the differences between these values likely reflect the
different methods imposed on the authors by the nature of their
respective datasets, making a final fraction difficult to ascertain.

After exclusion of apparent non-thermal sources, mass-loss
rates may be inferred for the remainder of the stars. Willis (1991)
re-interpreted the observations of Abbott et al. (1986) using re-
fined wind terminal velocity and ionisation/abundance values,
finding a mean mass-loss rate Ṁ ∼ 5.3 ± 2.3 × 10−5M� yr−1 for
the 24 stars considered. Leitherer et al. (1997) reported a mean
Ṁ∼ 4 × 10−5M�yr−1 for all spectral sub-types with the excep-
tion of WC9 stars, for which it appears lower by a factor of > 2,
while Cappa et al. (2004) find a mean Ṁ∼ 4±3×10−5M�yr−1 for
the WN stars and Ṁ∼ 2±1 × 10−5M�yr−1 for the WC8-9 stars.

Mass-loss rates for individual stars from these samples, bro-
ken down by spectral sub-type and assuming f = 1 (i.e. no wind-
clumping), are presented in Fig. 6 alongside those from these
observations (see Sect. 4.2.2). Note that a number of confirmed
binary systems2 demonstrate apparently thermal radio emission
and hence have been included in the plot. In such cases con-
tamination from emission from the WCR (Sect. 3.1.2) cannot be

1 We caution that a number of the WNLh stars within this sample are
likely very massive core-H burning objects such as WR24, WR25 and
WR89 and hence may not be in the same evolutionary state as other less
massive stars such as those found in Wd1.
2 e.g. WR9, 11, 22,79, 93, 138, 139, 141 and 145

Article number, page 9 of 34



A&A proofs: manuscript no. Wd1_census

Fig. 2: ALMA 3-mm contours (from the non-PB corrected image) overlaid on a FORS R-band image with a limiting magnitude of
∼17.5 mag (see Do10). The contours are plotted at -3,3,5,7,9,11,15,30,60,120 × 33 µJy beam−1.

excluded, which would lead to an artificially elevated mass-loss
rate.

Finally, although not a systematic survey, 42-GHz observa-
tions centred on Sgr A∗ by Yusef-Zadeh & Morris (1991) iden-
tified a large number of stars within the Galactic Centre cluster.
Given the age of the cluster (6-7 Myr; Martins et al. 2007) it is
expected that these stars will be less massive than those in Wd1,
while no cut for non-thermal sources is possible with extant data.
However, given the presence of a large number of the hitherto
unrepresented WN9h sub-type we include these values in Fig. 6.
In doing so we immediately highlight that the mass-loss rates of
the WN9h stars appear systematically lower than those of other
spectral sub-types, which we discuss further in Sect. 4.2.2.

To the best of our knowledge, the only systematic mm con-
tinuum survey of WRs was undertaken by Montes et al. (2015),
who report 1.2-mm fluxes for all 17 sources observed. Targets
appear to have been selected on the basis of previous radio de-
tections; hence this compilation will automatically be biased to-
wards brighter continuum sources. Combining these detections
with radio data revealed that all sources showed a positive (ther-
mal) mm-radio spectral index, even for stars such as WR79a and
105, which Cappa et al. (2004) suggest are possible non-thermal
sources. Montes et al. (2015) refrain from determining mass-loss
rates from these data and given the substantially larger sample
size, we choose to compare mass-loss rated derived for our Wd1
WR cohort to those from radio observations.
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Fig. 3: ALMA 3-mm colour-scale map with overlaid contours from the non-PB corrected image. The colour-scale ranges from 0.10
to 1.2 mJy beam−1and the contours are plotted at levels of 0.16,0.29,0.52,0.96,1.74,3.16 mJy beam−1. The stellar sources identified
in this study are labelled at the positions observed in the ALMA data. The insert shows a zoom-in of the region defined by the red
rectangle.

4.2. WRs within Wd1

Crowther et al. (2006a) provide a census of the WR population
of Wd1, finding spectral types spanning WN5 to WN10-11h and
WC8-9. We detected all of the 21 WRs within the observational
field - ranging in sub-type from the WN5 stars WR J and R
through to the WN9-11 stars WR S and Wd1-13 as well as WC
stars of sub-types WC8 (WR K) and WC9 (e.g. WR M). Only
WR N, T, W and X were external to the field. Of the detections, 8
WN (WR A, B, D, G, L, O, U and Wd1-13) and 5 WC stars (WR
C, E, F, H and M) display current binary signatures (Table 2)3,
with the WN10h/BHG star WR S postulated to have evolved via
binary channel prior to disruption via a SN (Clark et al. 2014b).
We caution that the six WN detections for which no evidence
for binarity currently exists (WR I, J, P, Q, R and V) have not
been the subject of an RV survey due to a lack of appropriate

3 e.g. spectroscopic radial velocity shifts (e.g. Ritchie et al. 2009a;
Clark et al. in prep.), periodic photometric variability (Bonanos 2007),
hard and/or over-luminous X-ray emission (Cl08) and/or an IR excess
due to emission from hot dust (Crowther et al. 2006a); with the latter
two diagnostics indicative of CWBs.

emission lines that can function as RV diagnostics. Finally the
WC8 star WR K shows no evidence for RV shifts (Ritchie et al.
2009a), although this could simply reflect a face-on inclination
or a wide and/or highly eccentric orbit, with the latter also poten-
tially explaining the lack of secondary binary diagnostics, which
are known to be transient phenomena in some such systems, in
this and other cluster WRs.

4.2.1. mm-radio spectral indices

Employing the 3.6-cm radio observations of Do10 we calcu-
late the two-point mm-radio spectral index, α, for each star.
Where no flux density is reported for a source in D010, we find
a limiting spectral index based on a 3.6 cm flux density limit
of 170µJy beam−1(see Do10 for details). We first examine those
sources with both mm and radio detections since their spectra are
most constrained and they provide exemplars for the remaining
objects.

WR A (WN7b + OB?, Porb = 7.62d binary) has a flat radio
spectrum (αradio ∼ 0.0) that is best interpreted as a composite
of thermal (wind) and non-thermal (WCR) components (Do10),

Article number, page 11 of 34



A&A proofs: manuscript no. Wd1_census

Fig. 4: ALMA 3-mm colour-scale (from the non-PB corrected image) with overlaid contours from the 8.6 GHz ATCA observations
(Do10). The colour-scale ranges from 0.1 to 2.0 mJy beam−1and the radio contours are plotted as those from Fig. 2 Do10, at levels
of -3,3,6,8,10,12,18,24,48,96,192 × 0.06 mJy beam−1.

although this is a slightly surprising result given that the short
orbital period should place the WCR well within the radio pho-
tosphere. The mm-radio spectral index, αmm ∼ 0.85 is unam-
biguously thermal, suggesting that the stellar wind dominates at
mm wavelengths, although this value is slightly steeper than ex-
pected for a canonical stellar wind. Following the discussion in
Sect. 3.1.2 this could be the result of a highly structured wind or
optically-thin emission from the WCR. The latter would be ex-
pected for a short period binary system but would appear difficult
to reconcile with the apparent non-thermal emission component
at radio wavelengths. The canonical α = 0.6 spectral index as-
sumes the wind to be at terminal velocity. The spectral index can

however be non-linear if the wind is accelerating, with a steeper
spectral index at higher frequencies. For WR A (and the other
WR stars), the characteristic radius where the free-free optical
depth is equal to 1 is ∼ 100 R?) and is therefore significantly be-
yond the wind acceleration zone for a canonical (β = 1) velocity
law.

WR V (WN8o) likewise has a flat radio spectrum αradio ∼

0.0) suggestive of a composite thermal+non-thermal origin al-
though, unlike WR A, no corroborative evidence for binarity ex-
ists. As with WR A αmm ∼ 0.46 suggests the increased domi-
nance of the stellar wind at mm-wavelengths.
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Fig. 5: Wolf-Rayet stars WR C, A and B as seen in the non-
primary beam corrected mosaic ALMA image. The contours are
plotted at levels of -1,1,1.4,2,2.8,4,5.7,8,11.3,16,22.6,32 × 3σ.
Where σ is 22, 28 and 30 µJy beam−1respectively.

WR B (WN7b + OB?, Porb = 3.52d binary) appears compa-
rable to WR A. It too has a flat radio spectrum (αradio ∼ 0.04);
however when considering the total flux of the mm source it has a
moderately negative spectral index (αmm ∼ −0.10). Examination
of both radio and mm data shows that it is significantly extended
at both wavelengths (Fig. 5 and Table 3). Following the reason-
ing in Do10, we consequently refrain from interpreting the emis-
sion beyond noting that the mm continuum flux is comparable to
other cluster WRs, suggesting that it is likely dominated by emis-
sion from the stellar wind. Finally we note the twin ‘lobes’ of
emission equidistant from the star and apparently aligned upon a
single axis (Fig. 5). While this is suggestive of the jet lobes that
are sometimes associated with high mass X-ray binaries such as
SS433, the double eclipse in the light-curve clearly indicates a
normal stellar companion (Bonanos 2007).

WR L (WN9h +OB?, Porb = 54d binary) has a radio spec-
trum (αradio > 0.5) consistent with the canonical value for a par-
tially optically-thin stellar wind, although current limits would
also accommodate an additional contribution from a non-thermal
component. The mm-radio spectral index (αmm ∼ 0.90) is di-
rectly comparable to that of WR A and so similar conclusions
apply here.

WR F (WC9d +OB?, Porb = 5.05d binary) has weaker con-
straints on the radio spectrum (αradio > 0.0) but a mm-radio spec-
tral index, αmm ∼ 0.64 entirely consistent with emission from a
stellar wind.

WR S (WN10-11h/BHG) is thought to be a single star (Clark
et al. 2014b) and the radio spectrum (αradio > 0.0) is consistent
with such an hypothesis however, the mm-radio spectral index
(αmm ∼ 0.22) is unexpectedly flat for such a scenario. We discuss
this below.

The final 15 stars only have lower limits for αmm due to a lack
of radio detections (Table 2). None of these demonstrate spectral
indices that imply purely non-thermal emission. Examining the
remaining stars by spectral sub-type and all five of the WN5 and
WN6 stars have mm-radio spectra consistent with thermal emis-
sion from a stellar wind, but which could also accommodate con-
tributions from optically-thin thermal or non-thermal emission;
in this regard we note that binarity is suggested for WR O, R and
U on the basis of their X-ray properties. Of the WN7 stars, WR
D, G and P, all appear to have emission dominated by the stel-
lar wind, despite binarity being suggested for WR D and G. As
with WR L, lower limits to the spectral index of WR I (WN8)
are higher than expected for a canonical stellar wind, while the
WN11h star Wd1-13 replicates the properties of, and conclu-
sions drawn for, the WN5 and WN6 stars.

Despite it being likely that all four WC9 stars (WR C, E, H
and M) are binaries, we find no compelling evidence for a non-
thermal emission component in their spectra, with a similar con-
clusion drawn for the apparently single WC8 star. Unfortunately,
the lack of period determinations for the WC9 cohort precludes
us commenting on the likelihood of an additional optically-thick
continuum contribution from the WCRs (cf. Pittard 2010, Sect.
3.1.2).

In summary, we find the mm-radio spectral indices of all the
WRs to be consistent with partially optically-thin thermal emis-
sion, with no compelling a priori reason to suspect a significant
contribution from a source other than the stellar wind for any
star, with the exception of WR V and S. The non-thermally emit-
ting fraction derived from mm observations is therefore clearly
lower than derived from extant radio surveys (Sect. 4.1), which
may be expected given the greater flux expected from the stellar
wind at mm wavelengths due to the ν+0.6 dependence.
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Table 4: Mass-loss rates calculated using the observed flux den-
sities at 3 mm.

Source Spectral type Te f f v∞ Ṁ
√

fcl

kK (km s−1 ) (M�yr−1)
WR J WN5h 60 1500 1.62e-05
WR R WN5o 60 1500 2.65e-05
WR O WN6o 70 1800 3.92e-05
WR U WN6o 70 1800 3.41e-05
WR Q WN6o 70 1800 2.73e-05
WR A WN7b+OB? 50 1300 7.19e-05
WR D WN7o 50 1300 2.07e-05
WR B WN7o+OB? 50 1300 3.99e-05
WR G WN7o 50 1300 2.22e-05
WR P WN7o 50 1300 1.92e-05
WR I WN8o 45 1000 3.55e-05
WR V WN8o 45 1000 2.34e-05
WR L WN9h+OB? 32 700 3.82e-05
WR S WN10-11h 25 400 5.18e-06
W13 WN9-10h 28.5 500 5.52e-06
WR K WC8 63 1700 3.22e-05
WR E WC9 45 1200 5.24e-05
WR F WC9d+OB? 45 1200 7.36e-05
WR C WC9d 45 1200 2.74e-05
WR H WC9d 45 1200 3.29e-05
WR M WC9d 45 1200 3.57e-05
W25 09Iab 31.5 2100 8.25e-06
W43a B0Ia 27.5 1500 5.50e-06
W61a B0.5Ia 26.5 1350 3.65e-06
W46a B1 Ia 22 725 3.65e-06
W56a B1.5Ia 21 500 1.45e-06
W52 B1.5Ia 21 500 1.50e-06
W8b B1.5Ia 21 500 1.81e-06
W28 B2Ia 19 550 2.57e-06
W2a B2Ia 19 550 1.66e-06
W11 B2Ia 19 550 1.59e-06
W23a B2Ia+BSG 18 400 3.19e-06
W71 B2.5Ia 19 550 2.78e-06
W33 B5Ia+ 13 300 2.57e-06
W7 B5Ia+ 13 300 3.64e-06
W42a B9Ia+ 10 200 1.92e-06

Notes. Adopted parameters are d = 5 kpc, Z=1, γ=1, Twind = 0.5×Te f f .
For the WR stars, µ is taken as 4.0 for WN6 or earlier, 2.0 for later than
WN6, 4.7 for WC8 & WC9. See Sect. 4.2.2 for discussion of the errors.

4.2.2. Mass-loss rates

As a consequence of the above discussion we utilise the mm-
fluxes in order to infer mass-loss rates for all detections fol-
lowing the methods outlined in Sect. 3.1.3. We present the
results in Table 4 and Figs. 6 and 12, where we also com-
pare our values to previous radio surveys (Sect. 4.1). While we
defer individually tailored non-LTE model-atmosphere analy-
ses for a future work, extant modelling for both WR F and S
(Clark et al. 2011, 2014b) shows an encouraging consistency
in mass-loss rates to within a factor of ∼ 2. Utilising solely
the errors in flux density we calculate example ranges for the
mass-loss rates for four representative sources. WR O, E, D
and U have ranges of 2.90 − 3.56 × 10−5, 5.09 − 5.67 × 10−5,

Fig. 6: Plot of 3-mm mass-loss rate versus spectral sub-type for
the WRs within Wd1 (red; open (filled) symbols corresponding
to apparent binary (single) stars). Comparable mass-loss rates
derived via radio observations of field stars are also presented
(symbols in black as before; data from Willis (1991); Leitherer
et al. (1997); Cappa et al. (2004)). Values for members of the
Galactic Centre cluster are given in blue (Yusef-Zadeh et al.
2017). Error-bars are plotted where given in the source material.
3-mm error-bars for Wd1 stars have not been included for clarity
but are estimated to be ±0.2 dex; please see the text in Sect. 4.2.2
for further details. Note in some instances a slight offset parallel
to the x-axis from the spectral-type marker has been applied for
reasons of clarity.

1.89 − 2.18 × 10−5 and 2.11 − 2.97 × 10−5 M�yr−1respectively,
implying errors of the order ±0.2 dex in Fig. 6. The mm mass-
loss rates are compared directly with those calculated from radio
measurements as published in the literature (see Sect. 4.1). Util-
ising directly the radio flux densities and re-calculating the radio
mass-loss rates assuming the same chemistry, V∞ and Teff , as
for the mm mass-loss rates, results in a change in the range of
∼ 0.05 − 0.3 × 10−5 M�yr−1for each object, with the WC mass-
loss rates experiencing the smallest shift.

Our survey has a number of advantages over those performed
previously. Specifically, our observations detect a much higher
percentage of sources (100% versus 44-65%; Sect. 4.1). As a
consequence we can be confident that the range of mass-loss re-
ported accurately reflects the underlying distribution, whereas
values from previous surveys will be biased due to the non-
detection of fainter objects supporting lower mass-loss rates.
Moreover, all of our objects are co-located, minimising uncer-
tainties in the distance estimate that adversely affect surveys
of isolated field objects. Additionally, accurate determination of
cluster age and hence progenitor masses for the WRs greatly im-
proves the utility of our mass-loss rates when employed to test
theoretical stellar evolutionary predictions and also gives confi-
dence that scatter in the values observed is intrinsic to the stars
themselves.

It is immediately obvious that, with the exceptions of the
WN10-11h stars WR S and Wd1-13, mass-loss rates for clus-
ter WRs span a limited range of log(Ṁ)∼ −4.1 → −4.8 or
∼ 1.6 − 7.4 × 10−5M�yr−1, a scatter which, following the pro-
ceeding discussion, is at least in part likely intrinsic. As is ap-
parent from Fig. 5, mean mass-loss rates for the whole ensemble
(Ṁ ∼ 3.6 ± 0.4 × 10−5M� yr−1; excluding WR S and Wd1-13)
and both WN (Ṁ ∼ 3.4±0.5×10−5M� yr−1) and WC cohorts (Ṁ
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Fig. 7: Integrated annular profiles for five sources in Wd1. The deviation from a smooth Gaussian profile can be seen for sources
WR M and Q, whilst none is visible for sources WR A and E. Wd1-20 shows a clear deviation from a Gaussian courtesy of low
surface-brightness emission surrounding the compact core.

∼ 4.2 ± 0.7 × 10−5M� yr−1) are entirely consistent with previous
radio determinations (Sect. 4.1) as well as values derived from
spectroscopic model-atmosphere analysis (Hamann et al. 2006;
Sander et al. 2012). Strikingly, we find no evidence of the sys-
tematically lower mass-loss rate for the WCL stars that had been
previously supposed (Sect. 4.1).

The WNVLH/BHG hybrids WR S and Wd1-13 are (past)
members of close binaries for which we hypothesise that bi-
nary interaction has resulted in the stripping of their outer layers
(Ritchie et al. 2010; Clark et al. 2014b). As such it is not imme-
diately apparent that they are directly comparable to the wider
population, appearing intermediate between objects such as the
WN9h star WR L and non-cluster early-B hypergiants such as
ζ1 Sco. WR L itself has a mass-loss rate in excess of those re-
ported for the lower-mass WN9h stars within the Galactic Centre
cluster, but which is directly comparable to those of other WRs
within Wd1.

Finally in Sect. 3.1.2 we highlighted the potential blending
on WR B with extended emission and the unexpectedly flat mm-
radio spectra of WR S and V. Despite this, in each case we find
that our mass-loss rate estimate is comparable to those other
members of the same spectral sub-type, supporting our implicit
assumption that the mm-continuum emission in each case re-
mains dominated by the stellar wind.

4.2.3. Spatially resolved emission

As reported in Sect. 3.1.1 Gaussian fitting to the sources im-
plies that excluding WR C, J and U the emission associated with
the remaining 18 WRs appears spatially extended (Table 3; Fig.
5)45. As expected the magnitude of the associated errors broadly
correlates with source luminosity; as a consequence we cannot

4 No sources were resolved in the surveys summarised in Sect. 4.1
which achieved spatial resolutions of ≥ 1.2" for Abbott et al. (1986),
> 6" for Cappa et al. (2004) and > 1" for Leitherer et al. (1995, 1997).
5 WR B appears qualitatively different from the remaining objects in
terms of source dimensions and hence we do not discuss it further here,
since it appears likely that it may simply represent a chance superpo-
sition of stellar point source with background optically-thin emission
(Sect. 4.2).

comment on any possible relation between source extent and lu-
minosity, WR sub-type or binary status with confidence. Despite
this we emphasise that the errors associated with the more lu-
minous sources are sufficiently small that the conclusion that a
subset of WRs are indeed resolved appears robust, with e.g. WR
A, E, F and L resolved at a significance of ∼ 5.3σ, ∼ 3.6σ, ∼ 4σ
and ∼ 3.3σ respectively.

As described in Sect. 3.1.1 an additional emission compo-
nent, visible as a ‘shoulder’ in the wing of the Gaussian profile,
appears present in a number of sources (e.g. WRs J , K and M;
see Fig. 7) in a similar manner to the cool super-/hypergiants,
although at a lower significance given the fainter nature of the
WRs. As a consequence we refrain from quantitative modelling
of this feature, although we speculate that these deviations im-
ply a composite structure for these sources, with a bright core
and surrounding low surface-brightness halo. Pre-empting Sect.
5.2.2, possible corroboration of this hypothesis is provided by
the structure of the central component of the RSG Wd1-20,
which is sufficiently resolved to directly observe a similar po-
tential core + halo structure in the image and its corresponding
annular profile (also shown in Fig. 7), which displays a similar
(albeit more pronounced) deviation from a Gaussian morphol-
ogy.

Utilising the mm-fluxes and adopted wind and stellar param-
eters of individual stars (Sect. 3.1.3) we may adopt the formal-
ism of Wright & Barlow (1975) to infer the radius of the mm-
photosphere of each object. These range from 0.1 (WR K) to
3.8 (WR L) milliarcsec; even for WR L this is a factor of ∼ 20×
smaller than the minor axis (Table 3). Comparison of such an an-
alytic estimate to one derived from non-LTE model-atmosphere
analysis for WR S (Clark et al. 2014b) shows coincidence to
within a factor of ∼ 2. As a consequence we may reject the hy-
pothesis that we are resolving the stellar wind in any of these
sources. Likewise, while (field) WR stars are commonly asso-
ciated with wind-blown bubbles, such structures are orders of
magnitude larger than we observe here. We defer further discus-
sion and interpretation of these phenomena until Sect. 8.2.
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Fig. 8: Yellow hypergiant stars 4a, 12a and 16a as seen by ALMA. The contours are from recent 8.6 GHz ATCA observations of
Wd1 (see Andrews et al. 2018, for more details)) and are plotted at -1, 1, 1.41, 2, 2.83, 4, 5.66, 8, 11.31, 16 × 143, 63 and 242
µJy beam−1 respectively.

5. The stellar sources II. The cool super- and
hyper-giants

We next turn to the YHGs and RSGs within Wd1. Such stars
are of particular interest since, despite the brevity of the phase,
it is thought that they shed mass at sufficient rates to profoundly
affect evolutionary pathways. However current models (e.g. Ek-
ström et al. 2012) rely on sparse empirical constraints for mass-
loss rates in this phase (de Jager et al. 1988), which often have
to be inferred via secondary diagnostics (e.g. via dust emission
which then requires the adoption of an uncertain dust:gas ra-
tio). Wd1 has the potential to be a critical test-bed for under-
standing mass-loss from stars for three reasons. Firstly it is suffi-
ciently massive that it contains the richest population of RSGs
and YHGs known in the Galaxy; moreover we find it at an
age (∼ 5 Myr) at which such stars first occur and, as a con-
sequence, these are also likely to be the most extreme objects
(Minitial ∼ 35 − 40 M�, log(L/L�) ∼ 5.8) permitted by nature at
solar metalicities (Ekström et al. 2012).

Radio observations by Do10 reveal the presence of ionised
circumstellar gas around a number of cluster members, with re-
cent, deeper, observations detecting and resolving such ejecta
around nine of the ten YHGs and RSGs (missing only Wd-8; An-
drews et al. submitted). Given their photospheric temperatures
are insufficient to ionise this material this leaves the presence of
a hot companion or the diffuse cluster radiation field as possi-
ble physical agents (cf. discussion in Do10). More importantly
this opens the possibility of directly determining time averaged
mass-loss rates for such systems. Being more sensitive to ex-
tended structure, the radio observations of Do10 provide more
accurate constraints on the masses of the circumstellar nebulae
while, with their enhanced spatial resolution, the ALMA obser-
vations provide complementary information on the geometry;
both prerequisites if mass-loss estimates are to be determined.
Unfortunately, we cannot easily combine both datasets to obtain
spectral index information, but Do10 conclude that the spatially
extended emission associated with each star is consistent with an
optically-thin thermal origin.

5.1. The yellow hypergiants

We detected and resolved four of the five cluster YHGs within
the field of view of our ALMA observations - Wd1-4, 12a, 16a
and 32 (Table 2 and Figs. B.1 & B.3), with Wd1-8 remaining
undetected at both mm and radio wavelengths.

The nebulae associated with Wd1-4 (F2 Ia+), Wd1-12a (A5
Ia+) and W16a (A2 Ia+) are clearly asymmetric at 3-mm, com-
prising a dominant (and resolved) point-like source embedded
at the apex of more extended, trailing nebulosity, with an arc-
or arrow-head like morphology (Figs. 8, and Table 3). These
sources are in turn located at the head of elongated radio nebula
of greater extent, with an overall cometary morphology compris-
ing a resolved, compact nucleus coincident with the YHG and an
extended tail. While the nebulosity associated with Wd1-32 is
too compact to reveal such a configuration, the radio continuum
observations of Wd1-265 by Andrews et al. (2018) show that
it, too, is associated with a spectacular cometary nebula. While
such behaviour has never before been observed for YHGs it is
reminiscent of the nebulae associated with the RSGs NML Cyg
and GC IRS7 (with the latter being more elongated), which are
thought to be shaped via an interaction with the nearby Cyg OB2
association and Galactic Centre cluster respectively (Schuster
et al. 2006; Serabyn et al. 1991; Yusef-Zadeh & Morris 1991).
Given that the cometary tails of the Wd1 YHGs are also all orien-
tated away from the cluster core we suggest that a similar physi-
cal process is in operation here; we return to this below.

What is the origin of the circumstellar material? In inter-
preting both radio and ALMA data it is important to recognise
that individual cluster YHGs may be in either a pre- or post-
RSG phase and hence may have very different physical proper-
ties (e.g. L/M ratio, Ṁ etc.). Nevertheless the comparable an-
gular sizes and fluxes (Tables 2, 3) of the extended emission
components and, where available, the radio-determined nebu-
lar masses6 point to a common physical origin. Ejection neb-
ulae have been associated with the post-RSG YHGs IRC +10
420 (Tiffany et al. 2010; Shenoy et al. 2016) and IRAS 17163-
3907 (Lagadec et al. 2011; Hutsemékers et al. 2013; Wallström
et al. 2017) but are physically more extended and contain orders-
of-magnitude more mass than those considered here. Likewise,
6 ∼ 4.5 × 10−3 M� for Wd1-4a, ∼ 6.1 × 10−3 M� for Wd1-12a and ∼
6.4 × 10−3 M� for Wd1-265 when scaled to 5 kpc (Do10).
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while the YHGs within Wd1 exhibit pulsations (Clark et al.
2010), none have (yet) demonstrated the long-term secular evo-
lution or giant eruptions that characterise post-RSG examples
such as ρ Cas, IRC +10 420 and HR8752 (Lobel et al. 2003;
Nieuwenhuijzen et al. 2012; Oudmaijer et al. 1996; Oudmaijer
1998). Finally, none show the rich emission spectra of both IRC
+10 420 and IRAS 18357-0604, which appear to be caused by
extreme post-RSG mass-loss rates (Oudmaijer 1998; Clark et al.
2014a); instead they share a continuous morphological sequence
with the mid-late BHGs within Wd1 (Clark et al. 2005) which
we argue are in a pre-RSG phase (Sect. 5.2).

Given the above, if the majority of Wd1 YHGs are indeed
in a pre-RSG phase and therefore are not yet prone to the large
scale instabilities that characterise post-RSG stars, then the cir-
cumstellar material appears most likely to result from the accu-
mulation of a quiescent stellar wind. Adopting a wind velocity
of ∼ 200kms−1, we infer a wind-mediated mass-loss rate of Ṁ
∼ 10−5M� yr−1 for the thermal component of Wd1-4a (when
scaled to 5kpc; Do10). For a freely expanding wind this would
correspond to a dynamical age of ∼ 102yr for the nebulae and
hence an accumulation of ∼ 10−3M� over this period. Given the
nebular morphologies of Wd1-4, 12a 16a and 265 clearly sug-
gest wind confinement in the hemisphere nearest the cluster core
this is better interpreted as a lower limit to nebular mass; indeed
estimates from Do10 and Andrews et al. (2018) are in excess of
this value.

5.2. The red supergiants

The ALMA observations resolved all four RSGs within Wd1,
including Wd1-75 for the first time (Figs 9 - 11 and Tables 2, 3).
To within observational uncertainties, all extended nebular com-
ponents have radio spectral indices consistent with optically-thin
thermal emission (Do10). Intriguingly, their nebular masses are
larger than inferred for the YHGs (Do10; Andrews et al. 2018),
suggesting either a longer duration for their mass loss or that a
differing physical process may be responsible for their forma-
tion. Determination of current mass-loss rates via mid-IR fluxes
is precluded by the saturation of the stars in all available flux-
calibrated datasets7. Nevertheless the detection of SiO and H2O
maser emission associated with both Wd1-26 and -237 argues
for very high mass-loss rates which are thought to occur dur-
ing the latter stages of the RSG phase, when stars have the most
extreme L/M ratio (Davies et al. 2008; Fok et al. 2012).

Observations of (predominantly lower-luminosity) field
RSGs show that, when present, their circumstellar nebulae show
a diverse set of properties. Few determinations of nebular masses
are present in the literature, but the nebulae associated with Wd1-
20, Wd1-26 and Wd1-237 appear broadly comparable to that
surrounding the extreme RSG VY CMa, a star for which tran-
sient mass-loss rates in excess of ∼ 10−3M�yr−1 have been in-
ferred (Shenoy et al. 2016; Smith et al. 2001, 2009a). Nebular
geometries range from quasi-spherical through to elongated (VX
Sgr and S Per respectively; Schuster et al. 2006), highly aspher-
ical and clumpy ((VY CMa; Smith et al. 2001) and cometary
(GC IRS7; Serabyn et al. 1991; Yusef-Zadeh & Morris 1991). A
number show evidence for interaction with their immediate en-

7 Similarly, their brightness and clear spectral variability (cf. Clark
et al. 2010) has, to date, prevented determination of their underlying
stellar parameters; we note that the absolute bolometric luminosities in-
ferred by Fok et al. (2012) appear inconsistent with cluster properties,
in terms of both the range spanned and also the extremely high(low)
individual luminosities inferred for individual objects.

Fig. 9: ALMA image of the red supergiant Wd1-237. The con-
tours are from recent 8.6 GHz ATCA observations of Wd1 (see
Andrews et al. 2018, for more details)) and are plotted at -1, 1,
1.41, 2, 2.83, 4, 5.66, 8, 11.31, 16 × 58 µJy beam−1.

vironment (e.g. GC IRS7 and Betelgeuse; Noriega-Crespo et al.
1997), while others provide evidence for time-variable mass-
loss rates (e.g. VY CMa and µ Cep; Shenoy et al. 2016). Given
the physical information encoded in the nebular geometries we
chose to group and discuss the cluster RSGs on this basis.

5.2.1. Wd1-75 and Wd1-237

At mm-wavelengths Wd1-75 presents as a compact, elongated
source (Table 3 and Figs. B.1 & B.3). In terms of spatial extent it
is similar to the approximately spherical nebula detected around
µ Cep in the mid-IR by de Wit et al. (2008)8, although additional
structure is observed at both larger and smaller radii at different
wavelengths around the latter star (Schuster et al. 2006; Shenoy
et al. 2016; Cox et al. 2012). The new radio continuum obser-
vations of Andrews et al. (submitted) show that this emission
is embedded within a more extended nebula; however given the
compact nature of the nebulosity at both wavelengths no conclu-
sions regarding morphology may be drawn.

Located in the southern extremities of the cluster, at mm-
wavelengths Wd1-237 appears similar to Wd1-75, albeit with
a slightly greater extent (Table 3). However radio observations
suggest a much more extended circumstellar nebula envelop-
ing this structure (∼ 11.2 × 8.5 arcsec; Do10). The observations
of Andrews et al. (2018, also Fig. 9 here) clearly resolve this
emission, revealing a compact central nebula co-incident with
the ALMA source and star itself, which is offset from the cen-
tre of a larger, quasi-spherical nebula which appears brighter on
the hemisphere facing the cluster core. This morphology is strik-
ingly reminiscent of the mid-IR nebula associated with µ Cep
(Shenoy et al. 2016). As with the YHGs this configuration imme-
diately suggests interaction with the cluster proper. Such nested

8 To within a factor of ∼ 3 − 4, subject to the uncertainties in distance
to µ Cep.
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Fig. 10: ALMA image of the red supergiant star Wd1-20 shown
in colour-scale. Over-plotted are the 8.6 GHz radio contours
from recent ATCA observations (see Andrews et al. 2018, for
further details) at levels of -1, 1, 1.41, 2, 2.83, 4, 5.66, 8, 11.31,
16 × 91 µJy beam−1.

configurations have been associated with other RSGs (cf. pre-
ceding discussion in Sect. 5.2) and have historically been inter-
preted as arising from variations in the mass-loss rate of the star.
While this is an obvious hypothesis for Wd1-237 it is not the
only explanation; an issue we return to below.

Given the apparent sculpting of the nebula by the cluster,
a robust determination of the dynamical age will require de-
tailed hydrodynamical simulations. Nevertheless simply taking
the displacement of the central core from the outer arc of emis-
sion facing the cluster core (∼ 0.12 pc for a distance of 5 kpc)
and an outflow velocity of 10 kms−1 suggests a minimum age
of ∼ 104 yr, which in turn would imply a time-averaged mass
loss rate of ∼ 10−5 M�yr−1 via the nebular mass (∼ 0.07 M�;
Do10, Andrews et al. 2018). We regard these as at best order of
magnitude estimates given uncertainties in nebular age, outflow
velocity and the possibility of an additional neutral component
to the nebula which would be invisible to current observations.

5.2.2. Wd1-20 and Wd1-26

Radio observations of the two remaining cluster RSGs have al-
ready revealed them to be associated with pronounced cometary
nebula (Do10). Such linearly extended structures have previ-
ously only been associated with the Galactic Centre star GC
IRS7, although bow shocks have been detected around a fur-
ther three RSGs; Betelgeuse (Noriega-Crespo et al. 1997), µ Cep
(e.g. Cox et al. 2012) and IRC -10414 (Gvaramadze et al. 2014).
Clearly however, they bear close resemblance to the nebulae of
the cluster YHGs, while that associated with Wd1-237 appears
to be a less collimated analogue.

We first turn to Wd1-26. Analysis of optical spectroscopy
reveals the gaseous element of the nebula to be composed of N-
enriched material (Mackey et al. 2015), while mid-IR imaging
reveals a co-spatial dusty component (Clark et al. 1998). The
Hα image presented by Wright et al. (2014); over-plotted on
ALMA data in Fig. B.1) appears to show Wd1-26 at the cen-
tre of a clumpy ring nebula. A second, triangular nebula is seen
to the north-east, with both structures potentially connected by a
thin, faint bridge of emission. Our ALMA observations clearly
replicate this latter feature, implying a physical connection be-
tween both components. While the southern nebular component
is obviously clumpy, the higher spatial resolution afforded by
ALMA (and the lack of contamination by background stars that
afflicts the Hα image) suggests that Wd1-26 does not sit at the
centre of a ring nebula. Rather it is located at the apex of one of
two bright elongated blobs of emission that run parallel to one
another. These are also aligned with the major axis of the nebula,
which in turn is directed towards the cluster core. Leading these
two sub-components are a further two emission hot-spots, with
all four components in turn embedded within more extended
lower surface-brightness emission. Comparison to the 2-cm ra-
dio image of GC IRS7 (Yusef-Zadeh & Morris 1991) reveals a
striking similarity, with both nebulae demonstrating ‘comet-like’
morphologies of comparable sizes (∼ 0.38 pc for Wd1-26 versus
∼ 1 pc for GC IRS 7), with significant substructure visible in
both (by analogy) ‘coma’ and ‘tail’ components.

As with Wd1-26, radio observations of Wd1-20 reveal the
nebular tail to be orientated away from the core of the cluster
and, at shorter wavelengths, it too appears to show similar sub-
structure. Likewise both mass and spatial extent (Table 3; Do10
and Andrews et al. 2018) are comparable. While the nebular
tail is not detected as a single coherent structure in the ALMA
data, isolated hot-spots coincident with features in the radio data
are seen; however these shortcomings are compensated for by
the detailed view afforded of the immediate environment of the
RSG itself (Fig. 10). Specifically a compact aspherical nebula
(∼ 0.02× ∼ 0.01 pc; Table 3) is coincident with the star. To the
north of this is a further arc of emission ∼ 0.14 pc in extent with
a projected separation between the apex of this structure and the
RSG of ∼ 0.036 pc. We note that this feature appears absent in
the nebula surrounding Wd1-26, it is not clear whether this cor-
responds to a real physical difference or instead is due to differ-
ing orientations/lines-of-sight through otherwise identical nebu-
lae.

An obvious interpretation for the arc of emission is that it is a
bow-shock, with the nebular morphologies of both Wd1-20 and
Wd1-26 being shaped by interaction with the wider cluster en-
vironment9. Potential physical agents for this include (i) relative

9 While the distance between star and bow-shock for Betelgeuse (0.8pc
for a distance of 400 pc; Noriega-Crespo et al. 1997), µ Cep (0.15 pc;
Cox et al. 2012) and IRC -10414 (∼ 0.14 pc; Gvaramadze et al. 2014)
are significantly larger than observed for Wd1-20, the cluster environ-
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Fig. 11: ALMA image of the red supergiant star Wd1-26 shown
in colour-scale. Contours are plotted at -1, 1, 1.41, 2, 2.83, 4,
5.66, 8, 11.31, 16 × 3σwhere σ is 64 µJy beam−1. See Appendix
B for further images of W26 comparing the mm emission with
that seen in the 8.6 GHz radio emission from Do10 and the Hα
images presented by Wright et al. (2014).

motion of the RSGs through the intra-cluster medium/wind (de-
tected at both radio and X-ray wavelengths; Do10, Muno et al.
2006b), (ii) photoionisation by the hot massive stellar cohort
and/or (iii) interaction with the stellar winds of individual cluster
members and/or a recent supernova(e).

Of these, motion of the stars relative to the cluster as a whole
may be disfavoured by the observation that the cometary nebulae
associated with both RSGs and YHGs are all orientated away
from the core region which, under such a scenario, would re-
quire all four objects to be falling towards this region. Likewise
one might anticipate that velocities significantly higher than the
cluster virial velocity would be required for bow shocks to form
via interaction with a static intra-cluster medium; essentially all
such objects would be ‘run-towards’ rather than the more normal
‘runaways’. As a consequence we favour an interaction between
the star and a dynamic stellar/cluster wind(s) as the most likely
causal agent for the cometary nebulae.

Mackey et al. (2014, 2015) investigated the shaping of RSG
winds by external agents providing, respectively, detailed sim-

ment of the latter object is much more extreme than that experienced by
any of the three former objects and so one would not expect equivalence
between them.

ulations of the bow-shock around Betelgeuse and the nebula of
Wd1-26 . The latter study suggests ram confinement of the stel-
lar wind by the nearby sgB[e] star Wd1-9 as a potential physical
origin for the cometary morphology. More sophisticated simu-
lations (e.g. incorporating more detailed models of the cluster
environment) would be invaluable in order to (i) further test this
hypothesis, (ii) constrain the mass-loss rates Wd1-26 (and Wd1-
20) and (iii) determine whether the ‘clumpy’ sub-structure is a
result of aspherical mass-loss (cf. VY CMa Smith et al. 2001) or
post-ejection hydrodynamical instabilities (cf. Cox et al. 2012).

Nevertheless, one important insight arising from these sim-
ulations is the prediction of a massive static shell interior to the
bow-shock. This forms via the stalling of the neutral RSG wind
as a result of external photoionisation and as a consequence of
this the accumulation of mass lost by the star. In this regard the
observation of such compact nebulae surrounding both Wd1-20
and -237 is of particular interest.

6. The stellar sources III. OB stars - supergiants,
hypergiants, LBVs and sgB[e] stars

The last cohort we turn to comprise the hot, early-type stars
within Wd1; a somewhat more heterogeneous grouping than
those previously considered. We detect a total of 21 mm-
continuum sources coincident with cluster members (Tables 2-3
and Figs.B.1 & B.3). Subject to the classification of two objects
(D09-R1 & R2)10 detections range from O9 Iab (Wd1-25) to B9
Ia+ (Wd1-42a) plus the sgB[e] star Wd1-9 and the LBV Wd1-
243. Despite their presence in large numbers, no stars of lower
luminosity class were detected (Clark et al. in prep.). In this re-
gard we note that based on radio data (Do10), the O9 Ib star
Wd1-15 should have been detected but was not, implying that it
is variable - a potential signature of non-thermal emission.

Three further stars - D09-R1 and R2 (OB SGs) and Wd1-17
(O9 Iab) - have radio properties suggestive of non-thermal emis-
sion (Do10). Our mm-data are consistent with such a conclu-
sion for Wd1-17 but imply flat or moderately positive mm-radio
spectra for D09-R1 and R2 (Table 2). However, the radio and
mm point sources associated with each star are further coincident
with extended continuum emission; consequently determination
of absolute fluxes and hence the physical nature of the emission
is uncertain. While we currently favour non thermal emission
for D09-R2 and Wd1-17 - and hence identification, along with
Wd1-15, as CWBs - no corroborative evidence for such a clas-
sification is available at optical or X-ray wavelengths (Table 2;
Cl08, Ritchie et al. in prep.).

Of the remaining objects the emission associated with the
LBV Wd1-243 and the central component of Wd1-9 is entirely
consistent with arising in a partially optically thick stellar winds.
Lower limits to the radio-mm spectral indices for Wd1-21, 8b,
11, 52, 56a and 61a do not constrain the emission mechanism,
while those for Wd1-7, 23, 25, 28, 30, 33, 42a, 43a, 46a and
71 are consistent with partially optically thick thermal emission,
though the presence of an additional optically thin and/or non-
thermal component may not be excluded. For the purposes of
this paper we proceed under the assumption that these are in-
deed thermal wind sources for which mass-loss rates may be de-
termined (Table 4 & Fig. 12).

Finally, we find a number of sources, including both super-
and hypergiants, to be partially resolved (Table 3), but with
an extent greater than expected on the basis of mass-loss rates

10 Both stars have been classified as generic OB supergiants on the basis
of their photometric magnitudes and colours.
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derived below; an exemplar being the LBV Wd1-243 (0.15 ±
0.01 arcsec); we discuss this phenomenon in Sect. 8.2.

6.1. The OB super- and hypergiants

Post-MS late-O and B stars within Wd1 follow a smooth pro-
gression in spectral morphologies leading to a corresponding
evolutionary passage from O9 III through O9-9.5 Iab to B0-4
Ia (Negueruela et al. 2010; Clark et al. 2015, in prep.). The sta-
tus of the B5-9 Ia+ stars Wd1-7, 33 and 42a is less clear-cut since
such classifications have also been applied to post-RSG objects
such as HD168607 and HD168625. The simulations of Groh
et al. (2014) and Martins & Palacios (2017), suggest massive
(> 40 M�) late O/early B supergiants evolve directly into cooler
hypergiants (consistent with the empirical results of Clark et al.
2012)). Alongside their close spectral similarity to the cluster B
supergiants this does however argue for these objects to be a di-
rect extension of this O9III - B0-4 evolutionary sequence, and
consequently for all these stars to be in a pre-RSG phase.

Accurate classifications are unavailable for D09-R1 and -R2
and, while the spectral variability and X-ray properties of Wd1-
30a reveal that it is a massive O+O star interacting binary, de-
termination of physical parameters is non trivial (Clark et al. in
prep.). Following the discussion above both Wd1-15 and Wd1-
17 appear likely non-thermal colliding wind sources. No obser-
vational constraints on the binary properties of either system are
available and consequently it is not possible to disentangle con-
tributions from the components of either system (stars and wind
collision zone). Excluding these stars, as well as the LBV Wd1-
243 and the sgB[e] star Wd1-9, which we discuss later, leaves
a total of 15 cluster members with modern classifications for
which mass-loss rate determinations may be made.

Of this subset, three stars, Wd1-23a (B2 Ia + B Ia?), 43a (B0
Ia + ?) and 52 (B1.5 Ia + ?) (Negueruela et al. 2010), show com-
pelling evidence for binarity11. Conversely, a number of known
and suspected massive OB binaries are not detected within the
cluster (e.g. Wd1-27 and 53a; Bonanos 2007; Clark et al. 1998)
suggesting that their properties do not uniformly favour discov-
ery at mm-wavelengths (cf. Sect. 3.1.2). Indeed, the mass-loss
rate inferred for Wd1-52 is entirely comparable to other (appar-
ently single) B1.5Ia stars and those of Wd1-23a and 43a to the
wider supergiant cohort and ∼ 0.6 dex lower than the apparent
CWB Wd1-17 (O9.5Ia) if we were to make the questionable as-
sumption that its 3mm flux derives solely from wind emission.

Mass-loss rate estimates for this subset are given in Table 4,
with upper-limits to the continuum-flux and mass-loss rates for
non-detections in Table A.2; these are presented graphically in
Fig. 1212. We supplement these data with the inclusion of the
WNVLh/BHG hybrids Wd1-5 and -1313.

The main finding of our study is the preference for detect-
ing super-/hyper-giants of spectral type B1.5 and lower (11 from
13 including the B1-1.5 Ia star Wd1-56a) versus earlier spec-

11 RV shifts (Wd1-2a, 7, 33, 42 and 71) and/or variability in Hα (Wd1-
7, 23, 33, 28, 42, 61 and 71) present in other stars are instead inter-
preted as originating in pulsations and wind variability respectively
(Clark et al. 2010) while none have X-ray properties indicative of CWBs
(Cl08).
12 Unfortunately, the heterogeneous S/N ratio across the field precludes
consideration of our results as a flux-limited survey of OB stars within
Wd1.
13 Consideration of the temperature of Wd1-5 (Clark et al. 2014b) leads
to indicative spectral classifications of B0 Ia+ for these objects; while
these are likely to have considerable uncertainty they are sufficient to
illustrate their relation to the other cluster members considered here.

Fig. 12: Plot of mass-loss rate versus spectral type for the pop-
ulation of OB super- (red, open symbols) and hyper-giants (red,
filled symbols) within Wd1. Upper limits are given by the in-
verted blue triangles. Comparable mass-loss rates derived via
radio observations of field stars are also presented (symbols in
black as before; data from Benaglia et al. 2007; Leitherer et al.
1995). With a (variable) mass-loss rate of log(Ṁ/M�(yr−1))∼-
4.89 → -4.74, Cyg OB2 #12 (B3-4 Ia+) lies outside this plot,
while the isolated point corresponds to the highly luminous BHG
ζ1 Sco. Error bars are not included for clarity, however represen-
tative errors are 0.1-0.2 dex for this work, and around 0.2 dex
for values taken from Benaglia et al. (2007) and Leitherer et al.
(1995).

tral types (4 from > 60 stars), with no cluster O giants detected.
Mass-loss rates vary from ∼ 1.5−4.0×10−6M�yr−1 for the B1.5-
9 super-/hypergiants and ∼ 4.0 − 8.3 × 10−5M�yr−1 for the ear-
lier supergiants. However, given the upper limits inferred from
the large population of undetected supergiants of early spectral
type we are currently unable to conclude that their mass loss
rates are systematically greater than their descendents of later
spectral types. Indeed, inspection of Fig. 12 suggests that the
≤B1.5 supergiants detected represent the extreme tail of a wider
distribution of mass-loss rates for such stars; taken as a whole
both detections and non-detections suggest a significant intrinsic
scatter in the mass-loss rates of stars of a given spectral type (e.g.
∼ 0.4 dex and ∼ 0.6 dex for B0 and B1 supergiants respectively).

How do these results compare to other studies? Despite an
absence of mm-continuum observations of OB stars in the liter-
ature, a number of investigations have been undertaken at radio
wavelengths (Benaglia et al. 2007; Bieging et al. 1989; Lamers
& Leitherer 1993; Leitherer et al. 1995; Puls et al. 2006; Scud-
eri et al. 1998). After exclusion of non-thermal sources Benaglia
et al. (2007) provide mass-loss rates for 19 O8-B5 supergiants
which we reproduce in Fig. 12, supplemented with the late-type
BHG HD160529 (Leitherer et al. 1995); our ALMA observa-
tions compare very favourably to these in terms of both numbers
of detections and distributions of spectral types. Upon consid-
eration of both datasets it is apparent that the mass-loss rates
derived by both studies are broadly comparable. However non-
LTE model-atmosphere analysis of spectroscopic data for field
B0-9 super-/hypergiants (Crowther et al. 2006b; Searle et al.
2008) suggest that the majority of stars so analysed support
lower mass-loss rates than those derived from these radio and
mm continuum observations. Fortuitously seven stars have both
radio continuum and spectroscopic mass-loss rate determina-
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Fig. 13: ALMA images of the LBV Wd1-243 (left), the SgB[e] star Wd1-9 (middle) and the B1 supergiant Wd1-46a (right). For
Wd1-243 and Wd1-46a contours are plotted at -1, 1, 1.41, 2, 2.83, 4, 5.66, 8, 11.31, 16 × 3σ where σ is 30 µJy beam−1. For
Wd1-9 the larger white contours are plotted as for Wd1-243 and -46a with a σ of 33 µJy beam−1. The red contours show the bright
compact source emission and are plotted at levels of 0.1,0.14,0.2,0.28,0.4,0.56,0.8 × the peak flux density of 411 mJy. The dashed
line bi-secting the central compact source in Wd1-9 reflects the orientation of the apparent bipolar outflow reported in Fenech et al.
(2017).

tions14 which reveal that the radio detected stars comprise the
subset of objects with the highest spectroscopic mass-loss esti-
mates. This implies that the radio detections reported in Benaglia
et al. (2007) are biased towards the high radio luminosity sub-
set of a larger population of predominantly fainter objects with
lower mass-loss rates, as we infer for our ALMA sample.

How, then, are these observations to be interpreted? A syn-
thesis of the spectroscopic studies suggests that supergiants of
later spectral type support lower mass-loss rates (cf. Fig. 9 of
Clark et al. 2014b), but this likely reflects the systematically
lower luminosities (and hence masses) of the (field) stars con-
sidered; this bias would not be expected to be present in the co-
eval population of Wd1. Indeed a more complicated relationship
between mass-loss rate and terminal wind velocity and spectral
type/stellar temperature might be expected as a result of the re-
combination of Fe iv to Fe iii - the so called ‘bi-stability jump’
- around 21kK/spectral type B1 (Pauldrach & Puls 1990; Vink
et al. 1999, 2000, 2001; Benaglia et al. 2007). Lamers et al.
(1995) show that the ratio of terminal-wind to escape-velocity
v∞/vescape) drops from ∼2.6 to ∼1.9 around spectral type B1.
Given the v−4/3

∞ dependence of mm-continuum flux (Eqn 1); in
the absence of any other changes to wind properties one would
therefore anticipate that it would be easier to detect stars of later
spectral type, as appears to be borne out by our observations.
In practice one might also anticipate changes in mass-loss rate
and ionisation structure of the wind with spectral type; however
quantitative analysis of such affects must await tailored non-LTE
analysis of individual stars.

6.2. The LBV Wd1-243

The LBV Wd1-243 is a strong, resolved source in our ALMA
data. Spectroscopic observations show that it remained in a
long-lived cool-phase between 2002-2009 (approximate spec-
tral type of A3 Ia+; Ritchie et al. 2009b), with unpublished
data suggesting this state persisted until 2015, despite the con-

14 HD2905, 30614, 37128, 41117, 152236, 154090

tinued presence of low level photospheric pulsations. The mm-
radio spectral index suggests a thermal spectrum with mass-loss
rates broadly comparable between both radio (log(Ṁ/M�yr−1)
∼ −5.0; data obtained between 1998-2002) and mm determina-
tions (log(Ṁ/M�yr−1) ∼ −4.6; data obtained in 2015). Intrigu-
ingly however, both values are an order-of-magnitude greater
than that determined from non-LTE model-atmosphere analysis
(log(Ṁ/M�yr−1) ∼ −6.1; Ritchie et al. 2009b), with the caveat
that the latter analysis was unable to simultaneously replicate
both the prominent H i and He i emission features and photo-
spheric lines evident in the spectra.

Even outside giant eruptions, LBV mass-loss rates are
clearly variable (Clark et al. 2009; Groh et al. 2009), potentially
providing an explanation the moderate discrepancies between
the radio and mm-continuum values. In any event both values
are fully consistent with the range of values quoted for LBVs in
the literature (Clark et al. 2014b, and refs. therein) and in partic-
ular the radio derived value for the post-RSG LBV HD160529
(nominal classification of B8 Ia+ and log(Ṁ/M�yr−1) ∼ −4.87
Leitherer et al. 1995).

6.3. The sgB[e] star Wd1-9

While ALMA observations of Wd1-9 have been discussed in de-
tail in Fenech et al. (2017) the improved sensitivity of the mosaic
images presented here reveals that the two filaments of emission
extending to the south-east and south-west of the source, which
were identified with low S/N in Fenech et al. (2017) are much
more clearly seen (Fig. 13). This strengthens the hypothesis that
Wd1-9 shares a comparable nebular morphology to the B[e]
star MWC349 (White & Becker 1985; Gvaramadze & Menten
2012). However, in the case of Wd1-9 we don’t see filamentary
structure at mm-wavelengths to the north of the nebular. Intrigu-
ingly, initial results of an analysis of Very Large Telescope Inter-
ferometer/MIDI data suggest the presence of compact, elongated
mid-IR continuum source aligned along the N-S axis of the radio
and mm-nebula (Hummel et al. in prep.), with a size comparable
to that of the circumbinary torus inferred from the IR spectral en-
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ergy distribution of Wd1-9 (Clark et al. 2013). If interpreted as
the circumbinary torus this would provide powerful corrobora-
tion of the hypothesis that the mm-continuum emission extended
in the NS direction resides in the orbital plane of the binary, with
the fainter filamentary structure resulting from the disc wind.

7. The magnetar CXO J164710.2-455216

Only a handful of out-bursting magnetars have been found to
exhibit (transient, pulsed) radio emission (Halpern et al. 2005;
Rea et al. 2012; Szary et al. 2015). Unlike normal pulsars they
appear to have shallow or flat spectral indices, making detection
at mm wavelengths viable, with Torne et al. (2015) demonstrat-
ing that the magnetar SGR 1734-2900 is visible up to 225 GHz
despite a distance of 8.3 kpc. Although the origin of radio emis-
sion from magnetars is still unclear, both Rea et al. (2012) and
Szary et al. (2015) predict that given the physical properties of
CXO J164710.2-455216 (viz. a ratio of quiescent X-ray lumi-
nosity to spin down power greater than unity and its residual
temperature) we should not expect to detect it at mm- or radio-
wavelengths. Moreover CXO J164710.2-455216 has yet to ex-
hibit the intense flares that were associated with the transient ra-
dio emission of SGR1900+14 and SGR1806-20 (Halpern et al.
2005, and refs. therein). Unsurprisingly, therefore, our ALMA
observations yield only an upper limit to the continuum flux of
65 µJy beam−1.

8. Discussion

8.1. Post-MS mass-loss rates and stellar evolution

Following the discussion in Sect. 1 a key omission in our de-
scription of the physics of massive stars is an accurate determi-
nation of mass-loss rates as a function of initial mass, metallic-
ity and age. These ALMA observations of Wd1 provide multiple
detections of every post-MS phase and offer the potential of uni-
formly determined, unbiased mass-loss rate determinations for
stars of Minit ∼ 30 − 50M�.

In the absence of tailored modelling of individual stars, de-
tailed comparison of mass-loss rates to predictions from stellar-
evolution models (e.g. Brott et al. 2011; Ekström et al. 2012;
Martins & Palacios 2017) are premature, although we may make
limited qualitative comparisons. Each of these codes utilises the
theoretical mass-loss recipe of Vink et al. (2001) for OB stars
(although Martins & Palacios (2017) scales this by a factor of a
third to account for recent observational findings) and the em-
pirical relation of Nugis & Lamers (2000) for field WRs, which
together imply a significant increase in mass-loss rates as stars
transition between these phases. Such behaviour is indeed ob-
served for Wd1, with a simple comparison of Figs. 6 and 12
indicating that WRs span log(Ṁ/M�(yr−1) ∼ −4.1 → −4.8 and
B super-/hypergiants log(Ṁ/M�(yr−1) ∼ −5.1 → −5.8 (with the
two WNVLh/BHG hybrids intermediate between both groups).
However we caution that the large number of OB supergiants
non-detections currently biases the sample to more extreme stars
and so one might expect an extension of this range to lower
mass-loss rates; deeper observations to detect the remaining co-
hort would be of great value. This is especially true since the
range of spectral types exhibited by early super-/hypergiants
within Wd1 (O9-B9) spans the predicted location (∼B1/21 kK)
of the bi-stability jump due to the transition from Fe iv to Fe iii
as the dominant ion in the stellar wind (Sect. 6.1).

Mass-loss rates for the cool super-/hypergiants utilised by
codes are again empirical in origin and for RSGs span multiple

orders of magnitude (de Jager et al. 1988; Nieuwenhuijzen & de
Jager 1990; Sylvester et al. 1998; van Loon et al. 1999). Do10 re-
port log(Ṁ/M�(yr−1) ∼ −5 for the partially optically-thick ther-
mal component associated with the YHG Wd1-4a and infer a
similar time-averaged mass-loss rate from the nebular properties
of the RSG Wd1-237. Such values are in excess of those exhib-
ited by the OB supergiants within Wd1 and are comparable to
the quiescent mass-loss rates of the handful of other similarly
extreme RSGs (log(Ṁ/M�(yr−1) ∼ −5 (quiescent) → −3 (out-
burst); Blöcker et al. 1999, 2001; Smith et al. 2001). However
they are not as high as those assumed in stellar evolution codes
which, for the Geneva models for a Minit ∼ 40 M� star, may
exceed log(Ṁ/M�(yr−1) ∼ −4. However we caveat this with the
observation that the mass-loss histories of such stars within Wd1
are clearly complex, as evidenced by their nebular morpholo-
gies, and further detailed modelling will be required to provide
more accurate mass-loss rates. Moreover, observations to inves-
tigate the possibility of a reservoir of neutral material within the
circumstellar environment, to which our observations would be
insensitive, would be particularly valuable since the presence of
such gas would render current estimates of time-averaged mass-
loss rates from nebular properties as lower limits.

Finally we turn to the apparent binary Wd1-9. Current evolu-
tionary codes do not incorporate binary interaction, but simula-
tions of potentially comparative systems (Petrovic et al. 2005)15

suggest time averaged mass-loss rates of log(Ṁ/M�(yr−1) ≥ −4
over the 4 − 6 × 104 yr period of fast case-A mass-transfer. The
current mass-loss rate inferred for Wd1-9 (log(Ṁ/M�(yr−1) ∼
−4.2 Fenech et al. 2017) is indeed broadly consistent with such
predictions. Moreover it is directly comparable to the highest
mass-loss rates determined for the cluster WRs, greater than
that of the ‘quiescent’ LBV Wd1-243 and provisional estimates
for the cool super-/hypergiants and most striking of all, a fac-
tor of & 20× larger than found for the most ‘extreme’ B su-
per/hypergiants within the cluster. Placing Wd1-9 into such an
evolutionary context therefore provides powerful confirmation
of the hypothesis that binary interaction plays a central role in
the lifecycle of massive stars.

Similar comparative studies of the evolution of mass-loss
rates through distinct post-MS phases are possible for both the
Arches and Galactic Centre clusters. Martins et al. (2007, 2008)
present the results of a comprehensive model-atmosphere anal-
ysis of near-IR spectro-photometric data for members of both
clusters, from which we find qualitative agreement with our re-
sults in the sense that mass-loss rates are also found to increase
with evolutionary state. Specifically the mass-loss rates for the
mid-O supergiants within the Arches cluster are approximately
an order-of-magnitude lower than those of the more massive and
evolved WN7-9h stars, with the mid-O hypergiants intermedi-
ate between both extremes (Martins et al. 2008). Likewise the
mass-loss rate obtained from analysis of a mean spectrum de-
rived from observations of ten late-O/early-B supergiants within
the Galactic centre cluster is over a magnitude lower than the
WNLh and WC groups (Martins et al. 2007).

Unfortunately, we may not quantitatively compare mass-
loss rates between Wd1 and the two galactic centre clusters
since results from the two different methods employed ap-
pear prone to a systematic discrepancy. Specifically, Martins
et al. (2008) demonstrate that the clumping-corrected (Ṁ/ f 0.5

cl )
spectro-photometric mass-loss estimates for the Arches cluster
members are significantly larger than the radio determinations of
Lang et al. (2005) for the subset of stars for which such a com-

15 Mprimary ∼ 41M�, Msecondary ∼ 20 − 30 M� and Porb ∼ 3 − 6 d.
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parison is possible. We arrive at a similar conclusion after com-
parison of the results of Yusef-Zadeh & Morris (1991); Martins
et al. (2007) for the Galactic Centre cluster16.

Martins et al. (2008) suggests that the discrepancy may in
part arise due to differences in the clumping fractions in the re-
gions of the inner and outer wind responsible for, respectively,
the near-IR spectral diagnostics and mm-/radio-continuum. Such
an evolution in the run of clumping with radius has also been
suggested by Puls et al. (2006); Runacres & Owocki (2002); we
return to this issue in Sect. 8.2.

8.2. Resolved emission associated with the OB
super/hyper-giant and WR cohorts

As detailed in Sect. 4.2.3 and 6 a significant number of the hot
stars within Wd1 (both WRs, and OB super-/hyper-giants) ap-
pear to be moderately extended in our continuum observations.
Stellar wind sources have been spatially resolved at mm and
radio wavelengths in the past; examples being the BHG Cyg
OB2#12 (Morford et al. 2017) and the LBV P Cygni (Skinner
et al. 1997), in both cases facilitated by the combination of rel-
ative proximity of the star, low terminal wind velocity and high
mass-loss rate. However as discussed in Sect. 4.2.3, analytic and
numerical estimates for the sizes of the mm-/radio photospheres
of the WRs indicate they should not be resolved with the current
observations, with an identical conclusion following for the OB
super-/hypergiants.

High resolution radio observations of the CWB WR140 has
resolved the WCR between both stellar components (Dougherty
et al. 2005) and for WR146 both binary components and the
WCR (Dougherty et al. 2000b). However despite the distance
to both being lower than to Wd1 and their orbital separation
much greater than e.g. WR A and B, the resolved emission has
a smaller angular scale than observed for the majority of stars
within Wd1; we therefore conclude that it unlikely that we have
resolved the (putative) WCRs of these objects.

Both binary driven mass-loss (cf. Wd1-9; Sect. 6.3) and im-
pulsive ejection events associated with the LBV phase (e.g. Dun-
can & White 2002) can give rise to resolved ejection nebulae.
However not all of the resolved stars within Wd1 currently show
evidence for binarity while, to the best of our knowledge, LBV-
like instabilities have not been associated with early OB super-
giants nor, with only a couple of exceptions, with WN stars ear-
lier than WN9 or WC stars. Moreover, given the similarity in
size of the resolved sources (Table 3) one would require mul-
tiple stars to synchronise the timing and duration of any such
interaction or instability in order to replicate this observational
finding.

Similarly, we note that a number of resolved sources demon-
strate mm-/radio spectral indices inconsistent with optically-thin
thermal emission, as might be expected for ejection nebulae. Ad-
ditionally, mass-loss rates derived for the sources are also fully
consistent with expectations for WR and OB super-/hypergiants
respectively (Sects. 4.2.2 and 6.1). Both observations suggest
sources dominated by emission from stellar winds; it seems

16 Of the seven stars in common between the two studies, the four deter-
mined to have clumped winds via spectro-photometric analysis all show
significant discrepancies when compared to radio-continuum mass-loss
rates - the WN9Lh stars GC IRS33E (∼ 7× greater than the radio de-
termination) and AF (∼ 2.2×), the WN8 star AF NW (∼ 5×) and the
WN5/6 star GC 16SE2 (∼ 5×); by contrast the mass-loss estimates for
the remaining three stars, for which clumping was not inferred, were
consistent to within a factor of < 1.4×.

highly improbable that either binary or LBV ejection mecha-
nisms could conspire to replicate the fluxes expected from the
stellar winds of such stars as a function of their spectral type.

Given the results of profile fitting (Sects. 3.1.1 and 4.2.3), it
appears possible that these sources are composite, with an unre-
solved core that dominates the emergent flux due to the stellar
wind and an extended, low surface brightness halo surrounding
this. If confirmed via higher-resolution observations, what would
be the physical origin of such a configuration? After eliminating
the above possibilities, and following our findings for the cool
super-/hyper-giant cohort, an obvious explanation would be the
confinement of the stellar winds leading to the formation of a
compact wind-blown bubble.

Since, to the best of our knowledge, such a phenomenon has
not been observed for isolated massive stars it is attractive to
attribute this to their membership of a YMC and we highlight
that Lang et al. (2005) report spatially resolved radio-continuum
emission of comparable extent associated with a number of stars
in the Quintuplet cluster. Prospective physical agents for this
would include pressure confinement by the intra-cluster medium
or wind/wind interaction with the stellar cohort and/or one or
more recent SNe. Both X-ray (Muno et al. 2006b), mm and ra-
dio continuum observations (Do10; Sect 8.3) argue for the pres-
ence of an intra-cluster medium or wind associated with Wd1.
Mackey et al. (2015) conclude that pressure confinement is un-
likely to explain the properties of the nebula surrounding Wd1-
26; given the greater wind momenta of, for example, the WR
cohort such a conclusion would appear to apply to such stars
as well. This would appear to favour interaction between stellar
and/or a cluster wind as a physical mechanism. However, given
the highly structured nature of the intra-cluster medium/wind
within Wd1 (as revealed by mm and radio continuum emission;
Sect. 3) and the asymmetrical distribution of massive stars within
Wd1, an assessment of both possibilities would required detailed
hydrodynamical simulation which are clearly beyond the scope
of this work.

8.3. Stellar and cluster wind interaction

It has long been understood that feedback from clusters via a
stellar-wind- and SN-driven cluster-wind contributes to chemi-
cal evolution of the interstellar medium (Krumholz et al. 2014).
However the properties and the mechanisms by which such
winds are initiated and maintained are currently uncertain, the
later due to uncertainties regarding the efficiency by which stel-
lar kinetic energy is converted to thermal energy, which in turn
drives the outflow (e.g. Stevens & Hartwell 2003). Previous ob-
servations of Wd1 have shown that the stars are embedded in
a highly complex cluster medium, with both hot (Muno et al.
2006b) and cool components present (Do10). The resolution of
our observations confirm that the cluster medium is highly struc-
tured, with multiple ‘clumps’ of characteristic scale present in
the core regions (Sect. 3.3), while also allowing us to study the
interaction and entrainment of the winds of individual stars in
unprecedented detail (Sect. 4,5 and 6).

In particular the pronounced cometary nebulae of the cool
super-/hypergiant cohort and the compact ‘bubbles’ associated
with both OB super-/hypergiant and Wolf-Rayet stars imply that
the circumstellar environments of stars embedded within young
massive clusters may be profoundly different from their isolated
brethren. One important consequence of this interaction may be
in modifications to the phenomenology of the resultant SNe.

There is a wealth of observational evidence for a subset
(∼ 10%) of SNe where the explosive ejecta interacts with pre-
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existing circumstellar ejecta/material (Smartt 2009). Although
comparatively infrequent, such type IIn events can be highly lu-
minous (e.g. Smith et al. 2007), potentially allowing their detec-
tion in the early Universe. Consequently the nature of the pro-
genitors has been subject to considerable interest. The apparent
requirement for the ejection of large amounts of circumstellar
material in the past has led to the suggestion that LBVs may be
the direct progenitors of such SNe (Smith et al. 2007; Gal-Yam
& Leonard 2009). Multiwavelength studies by Fox et al. (2013)
show a diversity of behaviour amongst type IIn SNe, suggesting
a range of progenitor systems, while Smith et al. (2009a) sug-
gested that extreme RSGs such as VY CMa may also be viable
progenitor systems (see also Yoon & Cantiello 2010). Moreover
spectroscopic signatures revealing the presence of circumstellar
material has also been observed in a wide range of other SNe
sub-types17.

However eruptions supporting greatly enhanced mass-loss
rates just prior to SNe are not the only route for the produc-
tion of dense circumstellar shells. The possibility of the reten-
tion of significant circumstellar material close to irradiated red
supergiants in the absence of impulsive mass-ejection events has
already been highlighted by Mackey et al. (2014, 2015); our
observations corroborate this hypothesis, while potentially ex-
tending it to yellow hypergiants. Equally exciting is the identifi-
cation of compact emission halos surrounding the WRs which,
given the age of Wd1, are expected to be the immediate pro-
genitors of core-collapse SNe. Flash spectroscopy of the type II
event SN2013fs (Yaron et al. 2017) and the type IIb SN2013cu
(Gal-Yam et al. 2014) suggest circumstellar material confined to
within < 1015cm of the progenitor; directly comparable to the
sizes of the extended emission associated with the cluster WRs.
While SN2013fs has been attributed to the explosion of a RSG,
the wind signatures identified for SN2013cu suggest instead a
WN(h) progenitor (Gal-Yam et al. 2014). Further observations
to quantify the amount of material contained within these struc-
tures to compare to the estimate obtained for SN2013cu would
be of obvious interest.

Finally we note that multiple lines of evidence suggest that
the pre-SN circumstellar environment may be aspherical, with
both clumpy (Smith et al. 2009b) or disc-like configurations
proposed (Levesque et al. 2014) for a subset of SNe, of which
SN1987A is the most obvious exemplar. Clearly the circum-
stellar nebula surrounding e.g. Wd1-26 satisfies the former con-
dition but we also highlight the apparent toroidal geometry of
the supergiant B[e] star Wd1-9, which in this case is thought to
arise from binary interaction. Nevertheless, taken as a whole the
properties of the circumstellar environments of the massive stars
within Wd1 suggest that they, and potential SNe arising from
them, may not be fully understood in isolation.

9. Concluding remarks

In this work and that of Fenech et al. (2017) we have presented
the results of a Band 3 (3mm) continuum survey of the Galac-
tic YMC Wd1. This target was chosen due to a combination
of proximity, co-evality, age and mass; the combination of the
latter three parameters resulting in a rich population of post-
MS stars characterised by the co-existence of both cool super-
/hypergiants and Wolf Rayets. An unprecedented total of 50 stel-
lar sources were detected, comprising examples of every phase
of massive post-MS evolution present within the cluster. The full

17 Superluminous SN (Gal-Yam 2012), Type IIP (Mauerhan et al.
2013), IIL (Liu et al. 2000) and Ibc Foley et al. (2007).

exploitation of this exceptional dataset in order to constrain the
physics of (radiatively-driven) stellar winds - e.g. the presence of
‘clumping’ - requires quantitative analysis (e.g. non-LTE model-
atmosphere analysis and/or hydrodynamical simulations of neb-
ular emission) which is beyond the scope of this work. Never-
theless we may immediately draw two broad conclusions from
the provisional analysis included here.

Firstly we were able to utilise canonical stellar- and wind-
properties and the formulation of Wright & Barlow (1975) to
infer mass-loss rates for both the hot (WR, LBV, sgB[e] and OB
Ia/Ia+) and cool (YHG and RSG) cohorts, with additional esti-
mates for the latter objects being drawn from their bulk nebular
properties (Do10). As a consequence we were able to follow the
evolution of the mass-loss rate through all post-MS phases to the
brink of SN; an essential observational constraint for quantify-
ing the physics of massive stars. As expected we found that the
mass-loss rates of the (brighter) OB super-/hypergiants are ap-
proximately an order of magnitude lower than those of the WRs,
with both appearing broadly consistent with determinations from
field populations. Where available, estimates for the sole LBV
and the YHGs/RSGs within the cluster were comparable to the
WR population, but not as extreme as measured for other such
examples (e.g. Ṁ> 10−4M�yr−1 for such stars during outburst).
We highlight that the distribution of spectral types of the OB
supergiants is particularly fortuitous since it spans the predicted
location of the bi-stability jump induced by the recombination of
Fe iv to Fe iii; Wd1 therefore offers a powerful test of predictions
for wind properties either side of this discontinuity.

In general we find no evidence that massive binaries are sys-
tematically brighter than single stars due to an additional contri-
bution from the wind-collision zone. However the mass-loss rate
inferred for the sgB[e] star Wd1-9 is exceptionally high (Fenech
et al. 2017), being directly comparable to the most extreme WRs
present (WR F (WC9) and WR A (WN7b)). Multiple lines of
evidence point to Wd1-9 being a massive interacting binary cur-
rently exhibiting rapid (case A) mass transfer/loss. Our obser-
vations suggest this has led to the formation of a massive cir-
cumstellar torus which drives a bipolar wind. Since Wd1-9 is
the only star within Wd1 to exhibit this phenomenon it suggests
that the duration of this violent phase is comparatively short, al-
though if the current mass-loss rate were maintained for only the
∼ 5− 10×104 yr predicted by theory (Petrovic et al. 2005) its in-
fluence on the subsequent evolution of both components would
be profound.

Secondly, we highlight the degree to which the environment
in which the stars are located affects their circumstellar prop-
erties. This is most evident in the manner in which the ejecta
associated with both the RSGs and YHGs appears to be sculpted
during interaction with the wider cluster, although the mecha-
nism(s) involved - cluster wind and/or radiation field - remain
uncertain. While this finding was anticipated the resolution of
the sources associated with a number of the OB supergiants and
WRs was not. Intriguingly, while such a phenomenon has not
been associated with isolated stars, Lang et al. (2005) report a
similar extension to the radio sources associated with a subset
of the O supergiants and WRs within the Quintuplet. Following
Sect. 8.2 the least objectionable hypothesis is that these represent
compact wind blown bubbles confined via one of the preceding
physical effects.

If correct this would have important ramifications both for
the initiation and driving of the cluster wind via the combined
action of individual stellar winds and SNe and also for the nature
of the SNe themselves. We are long accustomed to the idea that
the binary nature of a SN progenitor will affect the nature of the
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explosive endpoint via stripping of the outer H-rich stellar layers
and/or the subsequent shaping of the pre-explosion circumstellar
material - with Wd1-9 providing a case-in-point. However if the
circumstellar envelope of a SN progenitor may be shaped by its
immediate environment, potentially leading to the formation of a
dense envelope in the absence of an episode(s) of enhanced im-
pulsive mass-loss, then one must accept that the diversity of SNe
morphologies does not solely result from the properties of the
progenitor and instead originates in part from the wider context
of explosion. Given the expectation that the majority of massive
stars are born in a clustered environment, this is potentially a far
reaching conclusion.

To conclude; ALMA appears a uniquely powerful tool for
the quantitative analysis of mass-loss rates for massive stars, as
well as their interaction with their wider environment. As such
it has the potential to revolutionise our understanding of such
objects, providing a window into short-lived, violent phases of
their evolution and and opening a window onto quantitatively
new phenomena.
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Appendix A: Tables

Table A.1: ALMA 3mm source properties for all SEAC detected sources without catalogued identification in the literature.

Source RA Dec Flux density
(mJy)

Size Source type

Convolved Deconvolved
J2000 J2000 Major axis Minor axis Major axis Minor axis Indicator

2 46 58.528 50 31.259 0.21± 0.06 1.65 LAS — — Extended/diffuse
3 46 58.890 50 28.560 1.83± 0.17 3.93 LAS — — Isolated/diffuse
3A 46 58.890 50 28.560 1.67± 0.16 1.31± 0.08 1.11± 0.07 1.14± 0.10 0.95± 0.10
5 46 59.337 50 33.781 0.22± 0.06 0.97 LAS — — Isolated/diffuse
6 46 59.397 50 37.111 8.98± 0.55 11.87 LAS — — Extended/diffuse
6A 46 59.397 50 37.111 2.35± 0.19 1.43± 0.07 1.14± 0.06 1.28± 0.09 0.98± 0.07
6B 46 59.613 50 37.922 0.77± 0.11 1.05 ± 0.10 0.98± 0.10 0.85± 0.18 0.77± 0.19
6C 46 59.716 50 37.562 1.39± 0.18 1.68± 0.17 1.14± 0.11 1.56± 0.19 0.96± 0.14
6D 47 0.086 50 39.093 1.91± 0.18 1.53± 0.11 1.20± 0.08 1.40± 0.12 1.03± 0.11
7 46 59.509 50 41.611 1.09± 0.12 5.79 LAS — — Extended/diffuse
7A 46 59.148 50 40.260 0.63± 0.12 1.34± 0.19 0.90± 0.13 1.20± 0.22 0.63± 0.20
7B 46 59.268 50 41.071 0.22± 0.07 0.82± 0.17 0.73± 0.15 0.59± 0.41 0.32± 0.38
7C 46 59.509 50 41.611 0.66± 0.11 1.12± 0.13 0.94± 0.11 0.95± 0.18 0.70± 0.18
8 46 59.604 50 26.762 0.28± 0.08 0.92± 0.20 0.87± 0.19 0.72± 0.29 0.57± 0.35 Isolated
11 47 0.974 50 39.544 0.06± 0.03 0.94 LAS — — W4 nebula emission
12 47 1.017 50 36.214 0.38± 0.08 1.77 LAS — — W4 nebula emission
14 47 1.490 50 42.245 0.23± 0.06 1.86 LAS — — W4 nebula emission
16 47 1.809 51 22.925 1.35± 0.12 1.13± 0.06 0.86± 0.05 0.98± 0.07 0.57± 0.08 Isolated
18 47 2.050 51 38.945 0.10± 0.05 0.59± 0.16 0.54± 0.14 0.15± 0.24 0.00± 0.19 Isolated/diffuse
22 47 2.308 51 21.486 0.18± 0.04 1.21 LAS — — Isolated
25 47 2.722 50 26.046 0.18± 0.06 0.83± 0.18 0.60 0.13 0.59± 0.33 0.00± 0.22 Isolated/diffuse
26 47 2.722 50 5.616 0.06± 0.02 0.93 LAS — — Isolated/diffuse
27 47 2.842 51 18.966 0.77± 0.12 1.26± 0.14 0.95± 0.11 1.08± 0.17 0.76± 0.14 Isolated
28 47 2.912 50 26.676 0.13± 0.05 1.05 LAS — — Isolated/diffuse
35 47 3.644 51 16.086 0.36± 0.09 1.24± 0.23 0.72± 0.13 1.10± 0.27 0.33± 0.29 Isolated/diffuse
37 47 3.764 50 24.336 0.14± 0.05 0.69± 0.15 0.53± 0.11 0.32± 0.31 0.00± 0.27 Isolated/diffuse

39 47 3.868 51 6.186 2.46± 0.18 5.00 LAS — — Extended/potential
sources

39A 47 3.868 51 6.186 1.42± 0.14 1.26± 0.09 1.05± 0.07 1.10± 0.11 0.87± 0.10
39B 47 3.833 51 7.986 1.21± 0.15 1.42± 0.13 1.04± 0.09 1.30± 0.14 0.82± 0.13
42 47 3.980 50 36.756 0.06± 0.08 0.53 LAS — — Isolated/diffuse
49 47 4.204 51 16.086 0.23± 0.07 0.87± 0.19 0.74± 0.16 0.66± 0.45 0.35± 0.43 Isolated/diffuse
51 47 4.436 51 32.196 0.33± 0.06 1.79 LAS — — W20 nebula emission
52 47 4.522 50 30.726 0.17± 0.05 0.88± 0.15 0.40± 0.07 0.67± 0.20 0.00± 0.00 Isolated/diffuse

54 47 4.660 50 35.676 0.18± 0.06 1.15 LAS — —
Isolated/diffuse, possi-
bly associated with W9
filament

56 47 4.764 51 34.536 0.19± 0.04 1.46 LAS — — W20 nebula emission
57 47 4.781 51 27.426 0.49± 0.06 2.22 LAS — — W20 nebula emission
59 47 5.005 51 24.906 0.32± 0.06 1.49 LAS — — W20 nebula emission
60 47 5.031 51 1.776 1.27± 0.13 2.43 LAS — — Isolated/diffuse
64 47 5.685 51 7.535 2.63± 0.18 3.29 LAS — — Isolated/diffuse
66 47 5.883 51 11.135 0.97± 0.11 3.23 LAS — — Isolated/diffuse
69 47 6.107 51 3.755 0.65± 0.10 1.26± 0.14 0.78± 0.08 1.09± 0.17 0.50± 0.16 Isolated/diffuse
72 47 6.271 50 44.765 0.42± 0.07 0.97± 0.11 0.65± 0.07 0.78± 0.14 0.04± 0.17 Isolated/diffuse
73 47 6.383 51 13.474 1.16± 0.13 2.98 LAS — — Isolated/diffuse
74 47 6.392 51 20.494 0.11± 0.28 1.05 LAS — — Isolated/diffuse

Notes. Sources positions, flux densities and sizes are listed. Where the sources are small and compact major and minor axis measurements and
flux densities are taken from Gaussian fitting of the source. Where the source structure is more extended, largest angular sizes (LAS) are included
and the flux densities as measured from SEAC (see Sect.). Where extended sources contain knots of emission, Gaussian fitting has been performed
on the individual knots in addition to the whole source. For the relevant sources these are referred as A-D. Source type descriptions are as follows:
Isolated sources show bright emission clearly isolated from other features and represent the most likely candidates for potential emission associated
with stellar sources. Isolated/diffuse sources are similar to the isolated sources but are in the presence of low surface brightness emission. These
could therefore represent stellar emission or brighter knots in diffuse background emission. Extended/diffuse represent sources that appear to be
extended background emission.
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Table A.1—continued

Source RA Dec Flux density
(mJy)

Size Source type

Convolved Deconvolved
J2000 J2000 Major axis Minor axis Major axis Minor axis Indicator

75 47 6.409 51 4.384 0.28± 0.07 1.05± 0.19 0.62± 0.11 0.88± 0.23 0.00± 0.17 Isolated/diffuse
77 47 6.469 51 23.374 0.09± 0.02 1.10 LAS — — Isolated/diffuse
80 47 6.805 51 10.684 0.24± 0.04 1.43 LAS — — Isolated/diffuse
82 47 7.279 51 10.953 0.31± 0.08 1.02± 0.17 0.69± 0.12 0.83± 0.23 0.26± 0.26 Isolated/diffuse
85 47 7.805 51 15.272 0.06± 0.02 1.21 LAS — — Isolated/diffuse
86 47 8.295 50 43.321 0.16± 0.06 0.71± 0.16 0.66± 0.15 0.39± 0.33 0.21± 0.32 Isolated/diffuse
87 47 8.304 51 19.501 0.35± 0.08 1.00± 0.16 0.74± 0.12 0.78± 0.23 0.45± 0.30 Isolated/diffuse
90 47 8.494 51 11.040 1.33± 0.13 3.61 LAS — — Isolated/diffuse
90A 47 8.494 51 11.040 1.01± 0.11 1.34± 0.10 0.78± 0.06 1.21± 0.12 0.44± 0.11
91 47 8.527 50 38.370 0.12± 0.05 0.63± 0.15 0.59± 0.14 0.20± 0.22 0.00± 0.26 Isolated/diffuse
92 47 8.642 52 32.940 0.21± 0.07 0.81± 0.17 0.69± 0.14 0.57± 0.40 0.24± 0.37 Diffuse/Isolated
93 47 8.666 51 14.280 1.24± 0.15 3.56 LAS Isolated/diffuse
93A 47 8.666 51 14.280 0.82± 0.12 1.16± 0.12 0.10± 0.10 0.96± 0.16 0.82± 0.16
94 47 8.847 51 10.499 0.24± 0.06 1.39 LAS — — Isolated/diffuse
95 47 8.871 50 6.419 0.45± 0.06 1.58 LAS — — Isolated
97 47 8.915 50 30.359 0.15± 0.06 0.78± 0.18 0.55± 0.13 0.45± 0.37 0.00± 0.19 Diffuse/Isolated
99 47 9.148 51 3.208 0.16± 0.04 1.12 LAS — — Isolated/diffuse
100 47 9.355 51 12.118 0.20± 0.06 0.78± 0.15 0.59± 0.11 0.43± 0.34 0.18± 0.24 Diffuse/Isolated
101 47 10.741 50 30.083 0.22± 0.06 0.80± 0.14 0.63± 0.11 0.47± 0.36 0.26± 0.34 Isolated/diffuse
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Table A.2: ALMA 3-mm upper limits for stars that are undetected.

Spectral type Source Upper limits
Flux Density (Jy) Mass-loss rate Ṁ × f 0.5

cl
O9Iab W24 <1.16e-04 <6.04e-06

W35 <9.16e-05 <5.08e-06
W38 <1.23e-04 <6.33e-06
W41 <1.22e-04 <6.28e-06

O9Ib W15 <1.04e-04 <5.68e-06
W29 <9.38e-05 <5.26e-06
W37 <1.61e-04 <7.89e-06
W43c <6.92e-05 <4.19e-06

O9.5Iab W61b <6.13e-05 <3.75e-06
W74 <6.23e-05 <3.80e-06
W2019 <1.65e-04 <7.89e-06

O9.5Ib W46b <7.20e-05 <4.13e-06
W56b <6.06e-05 <3.63e-06
W65 <6.11e-05 <3.65e-06
W84 <6.91e-05 <4.00e-06
W86 <1.43e-04 <7.10e-06
W2017 <6.40e-05 <3.78e-06
W2028 <1.16e-04 <5.92e-06
W3005 <1.32e-04 <6.50e-06

B0Ia W31 <1.02e-04 <4.00e-06
W34 <8.76e-05 <3.57e-06
W43a <1.91e-04 <5.90e-06
W43b <1.46e-04 <4.82e-06
W55 <7.38e-05 <3.14e-06

B0Iab W49 <6.24e-05 <2.77e-06
W60 <8.15e-05 <3.38e-06
W63a <6.66e-05 <2.90e-06
W232 <1.28e-04 <4.74e-06

B0Ib W2002 <7.82e-05 <3.28e-06
W2011 <5.22e-05 <2.42e-05
W3024 <5.75e-05 <2.60e-05

B0.5Ia W10 <1.50e-04 <4.83e-06
W18 <1.27e-04 <4.25e-06
W21 <8.33e-06 <3.11e-06

B0.5Iab W6a <1.08e-04 <3.78e-06
W54 <4.45e-05 <1.94e-06
62a <8.32e-05 <3.19e-06

B0.5Ib W62a <8.29e-05 <3.10e-06
B1Ia W19 <1.04e-04 <2.02e-06

W21 <5.80e-05 <1.31e-06
W43b <6.76e-05 <1.46e-06
W78 <1.15e-04 <2.18e-06
W3019 <3.26e-04 <4.77e-06

B1Iab W49 <1.26e-04 <3.26e-06
W238 <4.91e-05 <1.15e-06

B1.5Ia W8b <2.76e-04 <2.91e-06
W52 <1.32e-04 <1.68e-06

B2Ia W2a <9.82e-05 <1.50e-06
W11 <2.14e-04 <2.69e-06

B3Ia W70 <1.21e-04 <2.18e-06
B4Ia W57a <9.39e-05 <1.11e-06

Notes. Samples from each spectral type have been included. The upper limit flux density is taken to be 3σ where σ is the rms noise level measured
in the primary-beam corrected image using a 2” circular region centred on the optical position. The mass-loss rate calculation was performed as
outlined in Sect. 4.2.2.
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Appendix B: Figures

Fig. B.1: ALMA image of the red supergiant star Wd1-26 shown in colour-scale with Hα (top-left) and radio (top-right) contours
overlaid. The Hα image is that presented in Wright et al. (2014) from the VPHAS survey of the region and the contours are
plotted at × 3σ where σ is 64 µJy beam−1. The radio contours are from recent ATCA observations of Westerlund 1 at 8.6 GHz
with contours plotted at -1,1,1.41,2,2.82,4,5.66,8,11.31,16,22.62,32,45.25,64,90.50× 0.304 mJy beam−1(see Andrews et al. 2018,
for further details). Also shown are the YHG Wd1-32 (bottom-left) and the RSG Wd1-75 (bottom-right) with 3-mm emission in
colour-scale and radio contours plotted as for Wd1-26 at multiples of 0.112 & 0.087 mJy beam−1.
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Fig. B.2: ALMA 3-mm colour-scale map with overlaid contours. The colour-scale ranges from 0.10 to 1.2 mJy beam−1and the
contours are plotted at levels of 0.16,0.29,0.52,0.96,1.74,3.16 mJy beam−1. The unknown sources identified in this study (see Table
A.1 for details) are labelled at the peak positions observed in the ALMA data.
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Fig. B.3: ALMA images of the remaining detected stars (see Table 2 for details). Contours are plotted at -
1,1,1.41,2,2.82,4,5.66,8,11.31,16,22.62,32,45.25,64×3σ. Unlabelled white crosses show the catalogue positions of each source.
Other stars in the vicinity are also labelled as well as the unidentified ALMA FCP18 sources (see Table A.1 for further informa-
tion).Article number, page 32 of 34
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Fig. B.3 continued
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