48 research outputs found

    Point-of-care testing for disasters: needs assessment, strategic planning, and future design.

    Get PDF
    Objective evidence-based national surveys serve as a first step in identifying suitable point-of-care device designs, effective test clusters, and environmental operating conditions. Preliminary survey results show the need for point-of-care testing (POCT) devices using test clusters that specifically detect pathogens found in disaster scenarios. Hurricane Katrina, the tsunami in southeast Asia, and the current influenza pandemic (H1N1, "swine flu") vividly illustrate lack of national and global preparedness. Gap analysis of current POCT devices versus survey results reveals how POCT needs can be fulfilled. Future thinking will help avoid the worst consequences of disasters on the horizon, such as extensively drug-resistant tuberculosis and pandemic influenzas. A global effort must be made to improve POC technologies to rapidly diagnose and treat patients to improve triaging, on-site decision making, and, ultimately, economic and medical outcomes

    Diagnostic Approach for the Differentiation of the Pandemic Influenza A(H1N1)v Virus from Recent Human Influenza Viruses by Real-Time PCR

    Get PDF
    BACKGROUND: The current spread of pandemic influenza A(H1N1)v virus necessitates an intensified surveillance of influenza virus infections worldwide. So far, in many laboratories routine diagnostics were limited to generic influenza virus detection only. To provide interested laboratories with real-time PCR assays for type and subtype identification, we present a bundle of PCR assays with which any human influenza A and B virus can be easily identified, including assays for the detection of the pandemic A(H1N1)v virus. PRINCIPAL FINDINGS: The assays show optimal performance characteristics in their validation on plasmids containing the respective assay target sequences. All assays have furthermore been applied to several thousand clinical samples since 2007 (assays for seasonal influenza) and April 2009 (pandemic influenza assays), respectively, and showed excellent results also on clinical material. CONCLUSIONS: We consider the presented assays to be well suited for the detection and subtyping of circulating influenza viruses

    High success and low mortality rates with non-invasive ventilation in influenza A H1N1 patients in a tertiary hospital

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In 2009, an outbreak of respiratory illness caused by influenza A H1N1 virus occurred worldwide. Some patients required Intensive Care Unit (ICU) admission. The use of non-invasive ventilation (NIV) in these patients is controversial, as the aerosol dispersion may contaminate the environment and health-care co-workers.</p> <p>Methods</p> <p>Describe the respiratory profile, the mortality rate, and the benefit of using NIV in patients with confirmed diagnosis of influenza AH1N1 who were admitted in the ICU during the year 2009.</p> <p>Results</p> <p>A total of 1, 401 cases of influenza A H1N1 were confirmed in our hospital by real-time RT-PCR in 2009, and 20 patients were admitted to the ICU. The patients' ages ranged from 18 to 74 years (median of 42). Acute Respiratory Failure (ARF) was present in 70% of patients. The median Acute Physiology and Chronic Health Evaluation II score was 7 (range 7 to 25). Of the 14 patients who developed ARF, 85.7% needed NIV and 14% needed invasive MV at admission. Our success rate (41.6%) with NIV was higher than that described by others. The hospital mortality rate was 2.1%. When influenza A H1N1 arrived in Brazil, the disease was already on endemic alert in other countries. The population was already aware of the symptoms and the health-care system of the treatment. This allowed patients to be properly and promptly treated for influenza A H1N1, while health-care workers took protective measures to avoid contamination.</p> <p>Conclusion</p> <p>In our study we found a high success and low mortality rates with non-invasive ventilation in patients with influenza A H1N1.</p

    Transmission of West Nile Virus by Culex quinquefasciatus Say Infected with Culex Flavivirus Izabal

    Get PDF
    Unlike most known flaviviruses (Family, Flaviviridae: Genus, Flavivirus), insect-only flaviviruses are a unique group of flaviviruses that only infect invertebrates. The study of insect-only flaviviruses has increased in recent years due to the discovery and characterization of numerous novel flaviviruses from a diversity of mosquito species around the world. The widespread discovery of these viruses has prompted questions regarding flavivirus evolution and the potential impact of these viruses on the transmission of flaviviruses of public health importance such as WNV. Therefore, we tested the effect of Culex flavivirus Izabal (CxFV Izabal), an insect-only flavivirus isolated from Culex quinquefasciatus mosquitoes in Guatemala, on the growth and transmission of a strain of WNV isolated concurrently from the same mosquito species and location. Prior infection of C6/36 (Aedes albopictus mosquito) cells or Cx. quinquefasciatus with CxFV Izabal did not alter the replication kinetics of WNV, nor did it significantly affect WNV infection, dissemination, or transmission rates in two different colonies of mosquitoes that were fed blood meals containing varying concentrations of WNV. These data demonstrate that CxFV probably does not have a significant effect on WNV transmission efficiency in nature

    Rapid semi-automated quantitative multiplex tandem PCR (MT-PCR) assays for the differential diagnosis of influenza-like illness

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Influenza A, including avian influenza, is a major public health threat in developed and developing countries. Rapid and accurate detection is a key component of strategies to contain spread of infection, and the efficient diagnosis of influenza-like-illness is essential to protect health infrastructure in the event of a major influenza outbreak.</p> <p>Methods</p> <p>We developed a multiplexed PCR (MT-PCR) assay for the simultaneous diagnosis of respiratory viruses causing influenza-like illness, including the specific recognition of influenza A haemagglutinin subtypes H1, H3, and H5. We tested several hundred clinical specimens in two diagnostic reference laboratories and compared the results with standard techniques.</p> <p>Results</p> <p>The sensitivity and specificity of these assays was higher than individual assays based on direct antigen detection and standard PCR against a range of control templates and in several hundred clinical specimens. The MT-PCR assays provided differential diagnoses as well as potentially useful quantitation of virus in clinical samples.</p> <p>Conclusions</p> <p>MT-PCR is a potentially powerful tool for the differential diagnosis of influenza-like illness in the clinical diagnostic laboratory.</p

    Increase Human Metapneumovirus Mediated Morbidity following Pandemic Influenza Infection

    Get PDF
    Human metapneumovirus (hMPV) is a recently discovered respiratory pathogen, infecting mainly young children. The infected patients suffer from influenza like symptoms (ILS). In Israel the virus is mainly circulating in February to March. Here we report on an increased rate of hMPV infection in the winter season of 2009–10. The 2009–10 infection had several unique characteristics when compared to previous seasons; it started around January and a large number of infants were infected by the virus. Genetic analysis based on the viral L and F genes of hMPV showed that only subtypes A2 and B2 circulated in Israel. Additionally, we have identified a novel variant of hMPV within subgroup A2b, which subdivide it into A2b1 and A2b2. Finally, we showed that the hMPV infection was detected in the country soon after the infection with the pandemic influenza virus had declined, that infection with the pandemic influenza virus was dominant and that it interfered with the infection of other respiratory viruses. Thus, we suggest that the unusual increase in hMPV infection observed in 2009–10 was due to the appearance of the pandemic influenza virus in the winter season prior to 2009–10

    Viral Etiology of Influenza-Like Illnesses in Antananarivo, Madagascar, July 2008 to June 2009

    Get PDF
    In Madagascar, despite an influenza surveillance established since 1978, little is known about the etiology and prevalence of viruses other than influenza causing influenza-like illnesses (ILIs).From July 2008 to June 2009, we collected respiratory specimens from patients who presented ILIs symptoms in public and private clinics in Antananarivo (the capital city of Madagascar). ILIs were defined as body temperature ≥38°C and cough and at least two of the following symptoms: sore throat, rhinorrhea, headache and muscular pain, for a maximum duration of 3 days. We screened these specimens using five multiplex real time Reverse Transcription and/or Polymerase Chain Reaction assays for detection of 14 respiratory viruses. We detected respiratory viruses in 235/313 (75.1%) samples. Overall influenza virus A (27.3%) was the most common virus followed by rhinovirus (24.8%), RSV (21.2%), adenovirus (6.1%), coronavirus OC43 (6.1%), influenza virus B (3.9%), parainfluenza virus-3 (2.9%), and parainfluenza virus-1 (2.3%). Co-infections occurred in 29.4% (69/235) of infected patients and rhinovirus was the most detected virus (27.5%). Children under 5 years were more likely to have one or more detectable virus associated with their ILI. In this age group, compared to those ≥5 years, the risk of detecting more than one virus was higher (OR = 1.9), as was the risk of detecting of RSV (OR = 10.1) and adenovirus (OR = 4.7). While rhinovirus and adenovirus infections occurred year round, RSV, influenza virus A and coronavirus OC43 had defined period of circulation.In our study, we found that respiratory viruses play an important role in ILIs in the Malagasy community, particularly in children under 5 years old. These data provide a better understanding of the viral etiology of outpatients with ILI and describe for the first time importance of these viruses in different age group and their period of circulation

    Comparison of the Luminex xTAG Respiratory Viral Panel with xTAG Respiratory Viral Panel Fast for Diagnosis of Respiratory Virus Infectionsâ–¿

    No full text
    Nucleic acid tests are sensitive and specific and provide a rapid diagnosis, making them invaluable for patient and outbreak management. Multiplex PCR assays have additional advantages in providing an economical and comprehensive panel for many common respiratory viruses. Previous reports have shown the utility of the xTAG respiratory viral panel (RVP) assay manufactured by Luminex Molecular Diagnostics for this purpose. A newer generation of this kit, released in Canada in early 2010, is designed to simplify the procedure and reduce the turnaround time by about 24 h. The assay methodology and targets included in this version of the kit are different; consequently, the objective of this study was to compare the detection of a panel of respiratory viral targets using the older Luminex xTAG RVP (RVP Classic) assay with that using the newer xTAG RVP Fast assay. This study included 334 respiratory specimens that had been characterized for a variety of respiratory viral targets; all samples were tested by both versions of the RVP assay in parallel. Overall, the RVP Classic assay was more sensitive than the RVP Fast assay (88.6% and 77.5% sensitivities, respectively) for all the viral targets combined. Targets not detected by the RVP Fast assay included primarily influenza B virus, parainfluenza virus type 2, and human coronavirus 229E. A small number of samples positive for influenza A virus, respiratory syncytial virus B, human metapneumovirus, and parainfluenza virus type 1 were not detected by the RVP Classic assay and in general had low viral loads
    corecore