399 research outputs found

    Decoherence of flux qubits due to 1/f flux noise

    Full text link
    We have investigated decoherence in Josephson-junction flux qubits. Based on the measurements of decoherence at various bias conditions, we discriminate contributions of different noise sources. In particular, we present a Gaussian decay function of the echo signal as evidence of dephasing due to 1/f1/f flux noise whose spectral density is evaluated to be about (10−6Φ0)2(10^{-6} \Phi_0)^2/Hz at 1 Hz. We also demonstrate that at an optimal bias condition where the noise sources are well decoupled the coherence observed in the echo measurement is mainly limited by energy relaxation of the qubit.Comment: 4 pages, error in Fig.4 corrected, to appear in PR

    Porous structure of thick fiber webs

    Get PDF
    The bulk properties and stochastic pore geometry of finite-thickness fiber webs are studied using a realistic model for the sedimentation of flexible fibers [K. J. Niskanen and M. J. Alava, Phys. Rev. Lett. 73, 3475 (1994)]. The resulting web structure is controlled by a dimensionless number F=Tfwf/tf, where Tf is fiber flexibility, wf fiber width, and tf fiber thickness. The fiber length (≫wf,tf) is irrelevant. With increasing coverage c̄, a crossover occurs at c̄=c0≈1+2F from a vacancy-controlled two-dimensional (2D) structure to a pore-controlled 3D structure. The 3D structures are isomorphic in that the pore dimensions are exponentially distributed, with the decay rate dependent only on F.Peer reviewe

    Two-body Pion Absorption on 3He^3He at Threshold

    Full text link
    It is shown that a satisfactory explanation of the ratio of the rates of the reactions 3He(π−,nn)^3He(\pi^-,nn) and 3He(π−,np)^3He(\pi^-,np) for stopped pions is obtained once the effect of the short range two-nucleon components of the axial charge operator for the nuclear system is taken into account. By employing realistic models for the nucleon-nucleon interaction in the construction of these components of the axial charge operator, the predicted ratios agree with the empirical value to within 10-20\%.Comment: 19, UHPHYDOR-94-

    Realization of Arbitrary Gates in Holonomic Quantum Computation

    Get PDF
    Among the many proposals for the realization of a quantum computer, holonomic quantum computation (HQC) is distinguished from the rest in that it is geometrical in nature and thus expected to be robust against decoherence. Here we analyze the realization of various quantum gates by solving the inverse problem: Given a unitary matrix, we develop a formalism by which we find loops in the parameter space generating this matrix as a holonomy. We demonstrate for the first time that such a one-qubit gate as the Hadamard gate and such two-qubit gates as the CNOT gate, the SWAP gate and the discrete Fourier transformation can be obtained with a single loop.Comment: 8 pages, 6 figure

    A novel genomic region on chromosome 11 associated with fearfulness in dogs

    Get PDF
    The complex phenotypic and genetic nature of anxieties hampers progress in unravelling their molecular etiologies. Dogs present extensive natural variation in fear and anxiety behaviour and could advance the understanding of the molecular background of behaviour due to their unique breeding history and genetic architecture. As dogs live as part of human families under constant care and monitoring, information from their behaviour and experiences are easily available. Here we have studied the genetic background of fearfulness in the Great Dane breed. Dogs were scored and categorised into cases and controls based on the results of the validated owner-completed behavioural survey. A genome-wide association study in a cohort of 124 dogs with and without socialisation as a covariate revealed a genome-wide significant locus on chromosome 11. Whole exome sequencing and whole genome sequencing revealed extensive regions of opposite homozygosity in the same locus on chromosome 11 between the cases and controls with interesting neuronal candidate genes such as MAPK9/JNK2, a known hippocampal regulator of anxiety. Further characterisation of the identified locus will pave the way for molecular understanding of fear in dogs and may provide a natural animal model for human anxieties.Peer reviewe

    Interqubit coupling mediated by a high-excitation-energy quantum object

    Full text link
    We consider a system composed of two qubits and a high-excitation-energy quantum object used to mediate coupling between the qubits. We treat the entire system quantum mechanically and analyze the properties of the eigenvalues and eigenstates of the total Hamiltonian. After reproducing well-known results concerning the leading term in the mediated coupling, we obtain an expression for the residual coupling between the qubits in the off state. We also analyze the entanglement between the three objects, i.e. the two qubits and the coupler, in the eigenstates of the total Hamiltonian. Although we focus on the application of our results to the recently realized parametric-coupling scheme with two qubits, we also discuss extensions of our results to harmonic-oscillator couplers, couplers that are near resonance with the qubits and multi-qubit systems. In particular, we find that certain errors that are absent for a two-qubit system arise when dealing with multi-qubit systems.Comment: 15 pages (two-column

    Failure of planar fiber networks

    Get PDF
    We study the failure of planar random fiber networks with computer simulations. The networks are grown by adding flexible fibers one by one on a growing deposit [K. J. Niskanen and M. J. Alava, Phys. Rev. Lett. 73, 3475 (1994)], a process yielding realistic three dimensional network structures. The network thus obtained is mapped to an electrical analogue of the elastic problem, namely to a random fuse network with separate bond elements for the fiber-to-fiber contacts. The conductivity of the contacts (corresponding to the efficiency of stress transfer between fibers) is adjustable. We construct a simple effective medium theory for the current distribution and conductivity of the networks as a function of intra-fiber current transfer efficiency. This analysis compares favorably with the computed conductivity and with the fracture properties of fiber networks with varying fiber flexibility and network thickness. The failure characteristics are shown to obey scaling behavior, as expected of a disordered brittlematerial, which is explained by the high current end of the current distribution saturating in thick enough networks. For bond breaking, fracture load and strain can be estimated with the effective medium theory. For fiber breaking, we find the counter-intuitive result that failure is more likely to nucleate far from surfaces, as the stress is transmitted more effectively to the fibers in the interior.Peer reviewe

    Survey of charge symmetry breaking operators for dd -> alpha pi0

    Full text link
    The charge-symmetry-breaking amplitudes for the recently observed d d -> alpha pi0 reaction are investigated. Chiral perturbation theory is used to classify and identify the leading-order terms. Specific forms of the related one- and two-body tree level diagrams are derived. As a first step toward a full calculation, a few tree-level two-body diagrams are evaluated at each considered order, using a simplified set of d and alpha wave functions and a plane-wave approximation for the initial dd state. The leading-order pion-exchange term is shown to be suppressed in this model because of poor overlap of the initial and final states. The higher-order one-body and short-range (heavy-meson-exchange) amplitudes provide better matching between the initial and final states and therefore contribute significantly and coherently to the cross section. The consequences this might have for a full calculation, with realistic wave functions and a more complete set of amplitudes, are discussed.Comment: REVTeX 4, 35 pages, 8 eps figures, submitted to PR

    Chiral Perturbation Approach to the pp -> pp pi0 Reaction Near Threshold

    Full text link
    The usual theoretical treatments of the near-threshold pp→ppπ0pp \rightarrow pp\pi^0 reaction are based on various phenomenological Lagrangians. In this work we examine the relationship between these approaches and a systematic chiral perturbation method. Our chiral perturbation calculation indicates that the pion rescattering term should be significantly enhanced as compared with the traditional phenomenological treatment, and that this term should have substantial energy and momentum dependence. An important consequence of this energy-momentum dependence is that, for a representative threshold kinematics and within the framework of our semiquantitative calculation, the rescattering term interferes destructively with the Born-term in sharp contrast to the constructive interference obtained in the conventional treatment. This destructive interference makes theoretical cross sections for pp→ppπ0pp \rightarrow pp\pi^0 much smaller than the experimental values, a feature that suggests the importance of the heavy-meson exchange contributions to explain the experimental data.Comment: 35 pages (REVTeX), 5 figures as 1 PostScript file acknowledgement changed, reference added, Phys.Rev.C (in print

    Virtual-pion and two-photon production in pp scattering

    Full text link
    Two-photon production in pp scattering is proposed as a means of studying virtual-pion emission. Such a process is complementary to real-pion emission in pp scattering. The virtual-pion signal is embedded in a background of double-photon bremsstrahlung. We have developed a model to describe this background process and show that in certain parts of phase space the virtual-pion signal gives significant contribution. In addition, through interference with the two-photon bremsstrahlung background, one can determine the relative phase of the virtual-pion process
    • …
    corecore