1,672 research outputs found

    Resonance Fluorescence of a Single Artificial Atom

    Get PDF
    An atom in open space can be detected by means of resonant absorption and reemission of electromagnetic waves, known as resonance fluorescence, which is a fundamental phenomenon of quantum optics. We report on the observation of scattering of propagating waves by a single artificial atom. The behavior of the artificial atom, a superconducting macroscopic two-level system, is in a quantitative agreement with the predictions of quantum optics for a pointlike scatterer interacting with the electromagnetic field in one-dimensional open space. The strong atom-field interaction as revealed in a high degree of extinction of propagating waves will allow applications of controllable artificial atoms in quantum optics and photonics.Comment: 5 pages, 4 figure

    Endothelial PKA activity regulates angiogenesis by limiting autophagy through phosphorylation of ATG16L1

    Get PDF
    The cAMP-dependent protein kinase A (PKA) regulates various cellular functions in health and disease. In endothelial cells PKA activity promotes vessel maturation and limits tip cell formation. Here, we used a chemical genetic screen to identify endothelial-specific direct substrates of PKA in human umbilical vein endothelial cells (HUVEC) that may mediate these effects. Amongst several candidates, we identified ATG16L1, a regulator of autophagy, as novel target of PKA. Biochemical validation, mass spectrometry and peptide spot arrays revealed that PKA phosphorylates ATG16L1α at Ser268 and ATG16L1β at Ser269, driving phosphorylation-dependent degradation of ATG16L1 protein. Reducing PKA activity increased ATG16L1 protein levels and endothelial autophagy. Mouse in vivo genetics and pharmacological experiments demonstrated that autophagy inhibition partially rescues vascular hypersprouting caused by PKA deficiency. Together these results indicate that endothelial PKA activity mediates a critical switch from active sprouting to quiescence in part through phosphorylation of ATG16L1, which in turn reduces endothelial autophagy

    Status of the PANDA barrel DIRC

    Get PDF
    The PANDA experiment at the future Facility for Antiproton and Ion Research in Europe GmbH (FAIR) at GSI, Darmstadt will study fundamental questions of hadron physics and QCD using high-intensity cooled antiproton beams with momenta between 1.5 and 15 GeV/c. Hadronic PID in the barrel region of the PANDA detector will be provided by a DIRC (Detection of Internally Reflected Cherenkov light) counter. The design is based on the successful BABAR DIRC with several key improvements, such as fast photon timing and a compact imaging region. Detailed Monte Carlo simulation studies were performed for DIRC designs based on narrow bars or wide plates with a variety of focusing solutions. The performance of each design was characterized in terms of photon yield and single photon Cherenkov angle resolution and a maximum likelihood approach was used to determine the π/K separation. Selected design options were implemented in prototypes and tested with hadronic particle beams at GSI and CERN. This article describes the status of the design and R&D for the PANDA Barrel DIRC detector, with a focus on the performance of different DIRC designs in simulation and particle beams

    Dynamical structure factors of the magnetization-plateau state in the S=1/2S=1/2 bond-alternating spin chain with a next-nearest-neighbor interaction

    Full text link
    We calculate the dynamical structure factors of the magnetization-plateau state in the S=1/2S=1/2 bond-alternating spin chain with a next-nearest-neighbor interaction. The results show characteristic behaviors depending on the next-nearest-neighbor interaction α\alpha and the bond-alternation δ\delta. We discuss the lower excited states in comparison with the exact excitation spectrums of an effective Hamiltonian. From the finite size effects, characteristics of the lowest excited states are investigated. The dispersionless mode of the lowest excitation appears in adequate sets of α\alpha and δ\delta, indicating that the lowest excitation is localized spatially and forms an isolated mode below the excitation continuum. We further calculate the static structure factors. The largest intensity is located at q=πq=\pi for small δ\delta in fixed α\alpha. With increasing δ\delta, the wavenumber of the largest intensity shifts towards q=π/2q=\pi/2, taking the incommensurate value.Comment: to appear in Phys. Rev. B (2001

    Detecting a stochastic gravitational wave background with the Laser Interferometer Space Antenna

    Get PDF
    The random superposition of many weak sources will produce a stochastic background of gravitational waves that may dominate the response of the LISA (Laser Interferometer Space Antenna) gravitational wave observatory. Unless something can be done to distinguish between a stochastic background and detector noise, the two will combine to form an effective noise floor for the detector. Two methods have been proposed to solve this problem. The first is to cross-correlate the output of two independent interferometers. The second is an ingenious scheme for monitoring the instrument noise by operating LISA as a Sagnac interferometer. Here we derive the optimal orbital alignment for cross-correlating a pair of LISA detectors, and provide the first analytic derivation of the Sagnac sensitivity curve.Comment: 9 pages, 11 figures. Significant changes to the noise estimate

    Instabilities in Luttinger liquids

    Full text link
    We discuss the appearance of magnetic and charge instabilities, named respectively metamagnetism (MM) and phase separation (PS), in systems which can be described by a perturbed Luttinger liquid. We argue that such instabilities can be associated with the vanishing of the effective Fermi velocity v, which in some cases coincides with a divergence of the effective Luttinger parameter K. We analyze in particular an XXZ chain with next-nearest-neighbor interactions in different limits where MM shows up and an extended Hubbard model where in turn, PS occurs. Qualitative agreement with previous studies is found.Comment: 7 pages, 3 figure

    Impact of alternative solid state forms and specific surface area of high-dose, hydrophilic active pharmaceutical ingredients on tabletability

    Get PDF
    YesIn order to investigate the effect of using different solid state forms and specific surface area (TBET) of active pharmaceutical ingredients on tabletability and dissolution performance, the mono- and dihydrated crystalline forms of chlorothiazide sodium and chlorothiazide potassium (CTZK) salts were compared to alternative anhydrous and amorphous forms, as well as to amorphous microparticles of chlorothiazide sodium and potassium which were produced by spray drying and had a large specific surface area. The tablet hardness and tensile strength, porosity, and specific surface area of single-component, convex tablets prepared at different compression pressures were characterized. Results confirmed the complexity of the compressibility mechanisms. In general it may be concluded that factors such as solid-state form (crystalline vs amorphous), type of hydration (presence of interstitial molecules of water, dehydrates), or specific surface area of the material have a direct impact on the tabletability of the powder. It was observed that, for powders of the same solid state form, those with a larger specific surface area compacted well, and better than powders of a lower surface area, even at relatively low compression pressures. Compacts prepared at lower compression pressures from high surface area porous microparticles presented the shortest times to dissolve, when compared with compacts made of equivalent materials, which had to be compressed at higher compression pressures in order to obtain satisfactory compacts. Therefore, materials composed of nanoparticulate microparticles (NPMPs) may be considered as suitable for direct compaction and possibly for inclusion in tablet formulations as bulking agents, APIs, carriers, or binders due to their good compactibility performanceSolid State Pharmaceutical Cluster (SSPC), supported by Science Foundation Ireland under Grant No. 07/SRC/B1158

    Limits on diffuse fluxes of high energy extraterrestrial neutrinos with the AMANDA-B10 detector

    Full text link
    Data from the AMANDA-B10 detector taken during the austral winter of 1997 have been searched for a diffuse flux of high energy extraterrestrial muon-neutrinos, as predicted from, e.g., the sum of all active galaxies in the universe. This search yielded no excess events above those expected from the background atmospheric neutrinos, leading to upper limits on the extraterrestrial neutrino flux. For an assumed E^-2 spectrum, a 90% classical confidence level upper limit has been placed at a level E^2 Phi(E) = 8.4 x 10^-7 GeV cm^-2 s^-1 sr^-1 (for a predominant neutrino energy range 6-1000 TeV) which is the most restrictive bound placed by any neutrino detector. When specific predicted spectral forms are considered, it is found that some are excluded.Comment: Submitted to Physical Review Letter
    corecore