16,088 research outputs found

    Competition and cooperation in one-dimensional stepping stone models

    Get PDF
    Cooperative mutualism is a major force driving evolution and sustaining ecosystems. Although the importance of spatial degrees of freedom and number fluctuations is well-known, their effects on mutualism are not fully understood. With range expansions of microbes in mind, we show that, even when mutualism confers a distinct selective advantage, it persists only in populations with high density and frequent migrations. When these parameters are reduced, mutualism is generically lost via a directed percolation process, with a phase diagram strongly influenced by an exceptional DP2 transition.Comment: 8 pages, 4 figure

    Critical information consumption and textbooks used in teacher preparation programs

    Get PDF
    Includes vita.Critical information literacy (CIL) and critical information consumption (CIC) are essential skills and habits of minds for pre-service teachers to develop as they prepare to educate future generations. The purpose of this critical discourse analysis was to investigate ways in which introductory teaching or pedagogy textbooks used in public universities' teacher preparation programs facilitate (or decline to facilitate) the direct and indirect application of CIL/CIC skills. Specifically, textbooks were evaluated on their (1) direct and indirect philosophical and epistemological discussion; (2) direct discussion of evaluating sources of information; (3) attention to power dynamics, biases, ideologies, and underlying assumptions in media and scholarly work; and (4) use of buzzwords and/or epistemically suspect statements. Findings were based on inductive analysis of emergent themes and suggest that there are key features of a text that indicate how CIL/CIC-favorable a work may be. These features include questioning, linguistic granularity, presenting strengths and criticisms of prominent paradigms, attending to power asymmetries in the classroom, and making explicit the hidden or implied messages in educational settings.Includes bibliographical reference

    Studies of orbital parameters and pulse profile of the accreting millisecond pulsar XTE J1807-294

    Full text link
    The accreting millisecond pulsar XTE J1807-294 was observed by XMM-Newton on March 22, 2003 after its discovery on February 21, 2003 by RXTE. The source was detected in its bright phase with an observed average count rate of 33.3 cts/s in the EPIC-pn camera in the 0.5-10 keV energy band (3.7 mCrab). Using the earlier established best-fit orbital period of 40.0741+/-0.0005 minutes from RXTE observations and considering a circular binary orbit as first approximation, we derived a value of 4.8+/-0.1 lt-ms for the projected orbital radius of the binary system and an epoch of the orbital phase of MJD 52720.67415(16). The barycentric mean spin period of the pulsar was derived as 5.2459427+/-0.0000004 ms. The pulsar's spin-pulse profile showed a prominent (1.5 ms FWHM) pulse, with energy and orbital phase dependence in the amplitude and shape. The measured pulsed fraction in four energy bands was found to be 3.1+/-0.2 % (0.5-3.0 keV), 5.4+/-0.4 % (3.0-6.0 keV), 5.1+/-0.7 % (6.0-10.0 keV) and 3.7+/-0.2 % (0.5-10.0 keV), respectively. Studies of spin-profiles with orbital phase and energy showed significant increase in its pulsed fraction during the second observed orbit of the neutron star, gradually declining in the subsequent two orbits, which was associated with sudden but marginal increase in mass accretion. From our investigations of orbital parameters and estimation of other properties of this compact binary system, we conclude that XTE J1807-294 is very likely a candidate for a millisecond radio pulsar.Comment: 4 pages, 4 figures, Accepted for publication in Astronomy and Astrophysics letter

    Evidence for moving breathers in a layered crystal insulator at 300K

    Full text link
    We report the ejection of atoms at a crystal surface caused by energetic breathers which have travelled more than 10^7 unit cells in atomic chain directions. The breathers were created by bombardment of a crystal face with heavy ions. This effect was observed at 300K in the layered crystal muscovite, which has linear chains of atoms for which the surrounding lattice has C_2 symmetry. The experimental techniques described could be used to study breathers in other materials and configurations.Comment: 7 pages, 3 figure

    Flame Retardant Effect of Aerogel and Nanosilica on Engineered Polymers

    Get PDF
    Aerogels are typically manufactured vIa high temperature and pressure-critical-point drying of a colloidal metal oxide gel filled with solvents. Aerogel materials derived from silica materials represent a structural morphology (amorphous, open-celled nanofoams) rather than a particular chemical constituency. Aerogel is not like conventional foams in that it is a porous material with extreme microporosity and composed of individual features only a few nanometers in length with a highly porous dendriticlike structure. This unique substance has unusual properties such as low thermal conductivity, refractive index and sound suppression; in addition to its exceptional ability to capture fast moving dust. The highly porous nature of the aerogel's structure provides large amounts of surface area per unit weight. For instance, a silica aerogel material with a density of 100 kilograms per cubic meters can have surface areas of around 800 to 1500 square meters per gram depending on the precursors and process utilized to produce it. To take advantage of the unique properties of silica aerogels, especially the ultra light weight and low thermal conductivity, their composites with various engineering polymers were prepared and their flammability was investigated by Cone Calorimetry. The flammability of various polystyrene/silica aerogel nanocomposites were measured. The combination of these nanocomposites with a NASA patented flame retardant SINK were also studied. The results were compared with the base polymer to show the differences between composites with different forms of silica

    Analysis of selected materials flown on interior locations of the Long Duration Exposure Facility

    Get PDF
    This report documents the post-flight condition of selected hardware taken from interior locations on the Long Duration Exposure Facility (LDEF). This hardware was generally in excellent condition. Outgassing data is presented for heat shrink tubing and fiberglass composite shims. Variation in total mass loss (TML) values for heat shrink tubing were correlated with location. Nylon grommets were evaluated for mechanical integrity; slight embrittlement was observed for flight specimens. Multi-layer insulation blankets, wire bundles, and paints in non-exposed interior locations were all in visibly good condition. Silicon-containing contaminant films were observed on silver-coated hex nuts at the space- and Earth-end interior locations

    X-ray and UV emission from the recurrent nova RS Ophiuchi in quiescence: Signatures of accretion and shocked gas

    Full text link
    RS Ophiuchi is a recurrent nova system that experiences outbursts every ~20 years, implying accretion at a high rate onto a massive white dwarf. However, previous X-ray observations of the system in quiescence have detected only faint emission that is difficult to reconcile with the high accretion rate predicted by nova theory for such frequent outbursts. Here, we use new Chandra and XMM-Newton observations obtained 537 and 744 days after the 2006 outburst to constrain both the accretion rate onto the white dwarf and the properties of the nova ejecta at these times. We detect low level UV variability with the XMM-Newton Optical Monitor on day 744 that is consistent with accretion disk flickering, and use this to place a lower limit on the accretion rate. The X-ray spectra in both observations are well described by a two component thermal plasma model. The first component originates in the nova shell, which can emit X-rays for up to a decade after the outburst. The other component likely arises in the accretion disk boundary layer, and can be equally well fit by a single temperature plasma or a cooling flow model. Although the flux of the single temperature model implies an accretion rate that is 40 times lower than theoretical predictions for RS Oph, the best fit cooling flow model implies Mdot < 1.2x10^-8 M_sol/yr 537 days after the outburst, which is within a factor of 2 of the theoretical accretion rate required to power an outburst every 20 years. Furthermore, we place an upper limit on the accretion rate through an optically thick region of the boundary layer of 2.0x10^-8 M_sol/yr. Thus, the X-ray emission in quiescence is consistent with the accretion rate expectations of nova theory. Finally, we discuss the possible origins of the low temperature associated with the accretion component, which is a factor of 10 lower than in T CrB, an otherwise similar recurrent nova.Comment: 16 pages, 6 figures, accepted for publication in Ap

    Meeting Air Transportation Demand in 2025 by Using Larger Aircraft and Alternative Routing to Complement NextGen Operational Improvements

    Get PDF
    A study was performed that investigates the use of larger aircraft and alternative routing to complement the capacity benefits expected from the Next Generation Air Transportation System (NextGen) in 2025. National Airspace System (NAS) delays for the 2025 demand projected by the Transportation Systems Analysis Models (TSAM) were assessed using NASA s Airspace Concept Evaluation System (ACES). The shift in demand from commercial airline to automobile and from one airline route to another was investigated by adding the route delays determined from the ACES simulation to the travel times used in the TSAM and re-generating new flight scenarios. The ACES simulation results from this study determined that NextGen Operational Improvements alone do not provide sufficient airport capacity to meet the projected demand for passenger air travel in 2025 without significant system delays. Using larger aircraft with more seats on high-demand routes and introducing new direct routes, where demand warrants, significantly reduces delays, complementing NextGen improvements. Another significant finding of this study is that the adaptive behavior of passengers to avoid congested airline-routes is an important factor when projecting demand for transportation systems. Passengers will choose an alternative mode of transportation or alternative airline routes to avoid congested routes, thereby reducing delays to acceptable levels for the 2025 scenario; the penalty being that alternative routes and the option to drive increases overall trip time by 0.4% and may be less convenient than the first-choice route

    Characterizing Young Brown Dwarfs using Low Resolution Near-IR Spectra

    Get PDF
    We present near-infrared (1.0-2.4 micron) spectra confirming the youth and cool effective temperatures of 6 brown dwarfs and low mass stars with circumstellar disks toward the Chamaeleon II and Ophiuchus star forming regions. The spectrum of one of our objects indicates that it has a spectral type of ~L1, making it one of the latest spectral type young brown dwarfs identified to date. Comparing spectra of young brown dwarfs, field dwarfs, and giant stars, we define a 1.49-1.56 micron H2O index capable of determining spectral type to within 1 sub-type, independent of gravity. We have also defined an index based on the 1.14 micron sodium feature that is sensitive to gravity, but only weakly dependent on spectral type for field dwarfs. Our 1.14 micron Na index can be used to distinguish young cluster members (t <~ 5 Myr) from young field dwarfs, both of which may have the triangular H-band continuum shape which persists for at least tens of Myr. Using effective temperatures determined from the spectral types of our objects along with luminosities derived from near and mid-infrared photometry, we place our objects on the H-R diagram and overlay evolutionary models to estimate the masses and ages of our young sources. Three of our sources have inferred ages (t ~= 10-30 Myr) significantly older than the median stellar age of their parent clouds (1-3 Myr). For these three objects, we derive masses ~3 times greater than expected for 1-3 Myr old brown dwarfs with the bolometric luminosities of our sources. The large discrepancies in the inferred masses and ages determined using two separate, yet reasonable methods, emphasize the need for caution when deriving or exploiting brown dwarf mass and age estimates.Comment: 11 pages, Accepted to Ap
    corecore