348 research outputs found

    The effect of on/off indicator design on state confusion, preference, and response time performance, executive summary

    Get PDF
    Investigated are five designs of software-based ON/OFF indicators in a hypothetical Space Station Power System monitoring task. The hardware equivalent of the indicators used in the present study is the traditional indicator light that illuminates an ON label or an OFF label. Coding methods used to represent the active state were reverse video, color, frame, check, or reverse video with check. Display background color was also varied. Subjects made judgments concerning the state of indicators that resulted in very low error rates and high percentages of agreement across indicator designs. Response time measures for each of the five indicator designs did not differ significantly, although subjects reported that color was the best communicator. The impact of these results on indicator design is discussed

    Evaluation of force-torque displays for use with space station telerobotic activities

    Get PDF
    Recent experiments which addressed Space Station remote manipulation tasks found that tactile force feedback (reflecting forces and torques encountered at the end-effector through the manipulator hand controller) does not improve performance significantly. Subjective response from astronaut and non-astronaut test subjects indicated that force information, provided visually, could be useful. No research exists which specifically investigates methods of presenting force-torque information visually. This experiment was designed to evaluate seven different visual force-torque displays which were found in an informal telephone survey. The displays were prototyped in the HyperCard programming environment. In a within-subjects experiment, 14 subjects nullified forces and torques presented statically, using response buttons located at the bottom of the screen. Dependent measures included questionnaire data, errors, and response time. Subjective data generally demonstrate that subjects rated variations of pseudo-perspective displays consistently better than bar graph and digital displays. Subjects commented that the bar graph and digital displays could be used, but were not compatible with using hand controllers. Quantitative data show similar trends to the subjective data, except that the bar graph and digital displays both provided good performance, perhaps do to the mapping of response buttons to display elements. Results indicate that for this set of displays, the pseudo-perspective displays generally represent a more intuitive format for presenting force-torque information

    Effects of spatially displaced feedback on remote manipulation tasks

    Get PDF
    Several studies have been performed to determine the effects on computer and direct manipulation task performance when viewing conditions are spatially displaced. Whether results from these studies can be directly applied to remote manipulation tasks is quenstionable. The objective of this evaluation was to determine the effects of reversed, inverted, and inverted/reversed views on remote manipulation task performance using two 3-Degree of Freedom (DOF) hand controllers and a replica position hand controller. Results showed that trials using the inverted viewing condition showed the worst performance, followed by the inverted/reversed view and the reversed view when using the 2x3 DOF. However, these differences were not significant. The inverted and inverted/reversed viewing conditions were significantly worse than the normal and reversed viewing conditions when using the Kraft Replica. A second evaluation was conducted in which additional trials were performed with each viewing condition to determine the long term effects of spatially displaced views on task performance for the hand controllers. Results of the second evaluation indicated that there was more of a difference in performance between the perturbed viewing conditions and the normal viewing condition with the Kraft Replica than with the 2x3 DOF

    Locus Coeruleus Activation Facilitates Memory Encoding and Induces Hippocampal LTD that Depends on β-Adrenergic Receptor Activation

    Get PDF
    Spatial memory formation is enabled through synaptic information processing, in the form of persistent strengthening and weakening of synapses, within the hippocampus. It is, however, unclear how relevant spatial information is selected for encoding, in preference to less pertinent information. As the noradrenergic locus coeruleus (LC) becomes active in response to novel experiences, we hypothesized that the LC may provide the saliency signal required to promote hippocampal encoding of relevant information through changes in synaptic strength. Test pulse stimulation evoked stable basal synaptic transmission at Schaffer collateral (SC)–CA1 stratum radiatum synapses in freely behaving adult rats. Coupling of these test pulses with electrical stimulation of the LC induced long-term depression (LTD) at SC–CA1 synapses and induced a transient suppression of theta-frequency oscillations. Effects were N-methyl-D-aspartate and β-adrenergic receptor dependent. Activation of the LC also increased CA1 noradrenalin levels and facilitated the encoding of spatial memory for a single episode via a β-adrenoceptor–dependent mechanism. Our results demonstrate that the LC plays a key role in the induction of hippocampal LTD and in promoting the encoding of spatial information. This LC–hippocampal interaction may reflect a means by which salient information is distinguished for subsequent synaptic processing

    The SCAPA LWFA beamline

    Get PDF
    The Scottish Centre for the Application of Plasma based Accelerators situated at the University of Strathclyde in Glasgow, UK, is coming online. It comprises three radiation shielded concrete bunkers housing a total of seven beamlines and interaction chambers, each driven by one of a pair of high power Ti sapphire laser systems a 350 TW and a 40 TW

    Defective Synapse Maturation and Enhanced Synaptic Plasticity in Shank2 Δex7-/- Mice

    Get PDF
    Autism spectrum disorders (ASDs) are neurodevelopmental disorders with a strong genetic etiology. Since mutations in human SHANK genes have been found in patients with autism, genetic mouse models are used for a mechanistic understanding of ASDs and the development of therapeutic strategies. SHANKs are scaffold proteins in the postsynaptic density of mammalian excitatory synapses with proposed functions in synaptogenesis, regulation of dendritic spine morphology, and instruction of structural synaptic plasticity. In contrast to all studies so far on the function of SHANK proteins, we have previously observed enhanced synaptic plasticity in Shank2 Δex7-/- mice. In a series of experiments, we now reproduce these results, further explore the synaptic phenotype, and directly compare our model to the independently generated Shank2 Δex6-7-/- mice. Minimal stimulation experiments reveal that Shank2 Δex7-/- mice possess an excessive fraction of silent (i.e., α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid, short, AMPA receptor lacking) synapses. The synaptic maturation deficit emerges during the third postnatal week and constitutes a plausible mechanistic explanation for the mutants' increased capacity for long-term potentiation, both in vivo and in vitro. A direct comparison with Shank2 Δex6-7-/- mice adds weight to the hypothesis that both mouse models show a different set of synaptic phenotypes, possibly due to differences in their genetic background. These findings add to the diversity of synaptic phenotypes in neurodevelopmental disorders and further support the supposed existence of "modifier genes" in the expression and inheritance of ASDs

    PDE4 inhibition enhances hippocampal synaptic plasticity in vivo and rescues MK801-induced impairment of long-term potentiation and object recognition memory in an animal model of psychosis

    Get PDF
    Inhibition of phosphodiesterase type 4 (PDE4) by rolipram (4-(3-(cyclopentyloxy)-4-methoxyphenyl)-pyrrolidin-2-one) has been the focus of many behavioral and molecular studies in the recent years. Rolipram exhibits memory-enhancing effects in rodents. In vitro studies have shown that long-term potentiation (LTP), which may comprise a cellular substrate for learning, is also enhanced by rolipram. However, effects have not been assessed in vivo. Rolipram has antipsychotic properties. Psychosis affects cognition and in animal models of psychosis LTP is impaired. In this study, we investigated if PDE4 inhibition improves LTP in healthy animals in vivo and if PDE4 inhibition rescues impaired LTP and prevents object recognition memory deficits in an animal model of psychosis. Recordings were made from the hippocampus of adult, freely behaving Wistar rats. Thirty minutes after treatment with rolipram or vehicle, a tetanus was applied to the medial perforant path to elicit short-term potentiation (STP) in the dentate gyrus. At this time-point, radioimmunoassay revealed that rolipram significantly elevated cyclic adenosine monophosphate levels in the dorsal hippocampus, in line with reports by others that rolipram mediates decreased PDE4 activity. In healthy animals, both intracerebroventricular and subcutaneous treatment with rolipram facilitated STP into LTP, suggesting that PDE4 inhibition may have a permissive role in plasticity mechanisms that are relevant for learning and memory. One week after a single systemic treatment with the irreversible N-methyl--aspartate antagonist, MK801, LTP and object recognition memory were significantly impaired, but could be rescued by PDE4 inhibition. These data suggest that the relief of cognitive disturbances in psychosis models by rolipram may be mediated in part by a rescue of hippocampal LTP

    Clínica para la Salud Mental Los Pinos

    Get PDF
    Artículo de InvestigaciónLa salud mental es un tema de gran relevancia en la sociedad actual, es por esto que se busca enfrentar una estigmatización que se ha tenido en cuanto a un diseño funcionalista. Como solución se plantea un equipamiento donde se diseña a partir del confort climático en un contexto que cuenta con una serie de determinantes a las que se le dará respuesta.1. INTRODUCCIÓN 2. METODOLOGÍA 3. RESULTADOS 4. DISCUSIÓN 5. CONCLUSIONES 6. REFERENCIAS 7. ANEXOSPregradoArquitect

    Experimental and numerical analysis of initial plasticity in P91 steel small punch creep samples

    Get PDF
    To date, the complex behaviour of small punch creep test (SPCT) specimens has not been completely understood, making the test hard to numerically model and the data difficult to interpret. This paper presents a novel numerical model able to generate results that match the experimental findings. For the first time, pre-strained uniaxial creep test data of a P91 steel at 600 °C have been implemented in a conveniently modified Liu and Murakami creep damage model in order to simulate the effects of the initial localised plasticity on the subsequent creep response of a small punch creep test specimen. Finite element (FE) results, in terms of creep displacement rate and time to failure, obtained by the modified Liu and Murakami model are in good agreement with experimental small punch creep test data. The rupture times obtained by the FE calculations which make use of the non-modified creep damage model are one order of magnitude shorter than those obtained by using the modified constitutive model. Although further investigation is needed, this novel approach has confirmed that the effects of initial localised plasticity, taking place in the early stages of small punch creep test, cannot be neglected. The new results, obtained by using the modified constitutive model, show a significant improvement with respect to those obtained by a state of the art creep damage constitutive model (the Liu and Murakami constitutive model) both in terms of minimum load-line displacement rate and time to rupture. The new modelling method will potentially lead to improved capability for SPCT data interpretatio

    The Ankyrin Repeats and DHHC S-acyl Transferase Domain of AKR1 Act Independently to Regulate Switching from Vegetative to Mating States in Yeast

    Get PDF
    Signal transduction from G-protein coupled receptors to MAPK cascades through heterotrimeric G-proteins has been described for many eukaryotic systems. One of the best-characterised examples is the yeast pheromone response pathway, which is negatively regulated by AKR1. AKR1-like proteins are present in all eukaryotes and contain a DHHC domain and six ankyrin repeats. Whilst the DHHC domain dependant S-acyl transferase (palmitoyl transferase) function of AKR1 is well documented it is not known whether the ankyrin repeats are also required for this activity. Here we show that the ankyrin repeats of AKR1 are required for full suppression of the yeast pheromone response pathway, by sequestration of the Gβγ dimer, and act independently of AKR1 S-acylation function. Importantly, the functions provided by the AKR1 ankyrin repeats and DHHC domain are not required on the same molecule to fully restore WT phenotypes and function. We also show that AKR1 molecules are S-acylated at locations other than the DHHC cysteine, increasing the abundance of AKR1 in the cell. Our results have important consequences for studies of AKR1 function, including recent attempts to characterise S-acylation enzymology and kinetics. Proteins similar to AKR1 are found in all eukaryotes and our results have broad implications for future work on these proteins and the control of switching between Gβγ regulated pathways
    corecore