1,269 research outputs found

    Applied Analysis and Synthesis of Complex Systems: Proceedings of the IIASA-Kyoto University Joint Seminar, June 28-29, 2004

    Get PDF
    This two-day seminar aimed at introducing the new development of the COE by Kyoto University to IIASA and discussing general modeling methodologies for complex systems consisting of many elements, mostly via nonlinear, large-scale interactions. We aimed at clarifying fundamental principles in complex phenomena as well as utilizing and synthesizing the knowledge derived out of them. The 21st Century COE (Center of Excellence) Program is an initiative by the Japanese Ministry of Education, Culture, Science and Technology (MEXT) to support universities establishing discipline-specific international centers for education and research, and to enhance the universities to be the world's apex of excellence with international competitiveness in the specific research areas. Our program of "Research and Education on Complex Functional Mechanical Systems" is successfully selected to be awarded the fund for carrying out new research and education as Centers of Excellence in the field of mechanical engineering in 2003 (five-year project), and is expected to lead Japanese research and education, and endeavor to be the top in the world. The program covers general backgrounds in diverse fields as well as a more in-depth grasp of specific branches such as complex system modeling and analysis of the problems including: nonlinear dynamics, micro-mesoscopic physics, turbulent transport phenomena, atmosphere-ocean systems, robots, human-system interactions, and behaviors of nano-composites and biomaterials. Fundamentals of those complex functional mechanical systems are macroscopic phenomena of complex systems consisting of microscopic elements, mostly via nonlinear, large-scale interactions, which typically present collective behavior such as self-organization, pattern formation, etc. Such phenomena can be observed or created in every aspect of modern technologies. Especially, we are focusing upon; turbulent transport phenomena in climate modeling, dynamical and chaotic behaviors in control systems and human-machine systems, and behaviors of mechanical materials with complex structures. As a partial attainment of this program, IIASA and Kyoto University have exchanged Consortia Agreement at the beginning of the program in 2003, and this seminar was held to introduce the outline of the COE program of Kyoto University to IIASA researchers and to deepen the shared understandings on novel complex system modeling and analysis, including novel climate modeling and carbonic cycle management, through joint academic activities by mechanical engineers and system engineers. In this seminar, we invited a distinguished researcher in Europe as a keynote speaker and our works attained so far in the project were be presented by the core members of the project as well as by the other contributing members who participated in the project. All IIASA research staff and participants of YSSP (Young Scientist Summer Program) were cordially invited to attend this seminar to discuss general modeling methodologies for complex systems

    Diurnal temperature range over Europe between 1950 and 2005

    Get PDF
    International audienceIt has been widely accepted that diurnal temperature range (DTR) decreased on a global scale during the second half of the twentieth century. Here we show however, that the long-term trend of annual DTR has reversed from a decrease to an increase during the 1970s in Western Europe and during the 1980s in Eastern Europe. The analysis is based on the high-quality dataset of the European Climate Assessment and Dataset Project, from which we selected approximately 200 stations, covering the area from Iceland to Algeria and from Turkey to Russia for 1950 to 2005. We investigate national and regional annual means as well as the pan-European mean with respect to trends and reversal periods. 17 of the 24 investigated regions including the pan-European mean show a statistical significant increase since 1990 at the latest. Of the remaining 7 regions, 2 show a non-significant increase, 3 a significant decrease and the remaining 2 no significant trend. The long-term change in DTR is governed by both surface shortwave and longwave radiation, the former of which has undergone a change from dimming to brightening. Consequently, we discuss the connections between DTR, shortwave radiation and sulfur emissions which are thought to be amongst the most important factors influencing the incoming solar radiation through the primary and secondary aerosol effect. We find reasonable agreement between trends in SO2 emissions, radiation and DTR in areas affected by high pollution. Consequently, we conclude that the long-term trends in DTR are mostly determined by changes in emissions and the associated changes in incoming solar radiation

    Manifestation of pairing modes in nuclear collisions

    Full text link
    We discuss the possible manifestation of pairing dynamics in nuclear collisions beyond the standard quasi-static treatment of pairing correlations. These involve solitonic excitations induced by pairing phase difference of colliding nuclei and pairing dynamic enhancement in the di-nuclear system formed by merging nuclei.Comment: 2 figures, 56th Zakopane Conference On Nuclear Physic

    A multi-criteria model analysis framework for assessing integrated water-energy system transformation pathways

    Get PDF
    Sustainable development objectives surrounding water and energy are interdependent, and yet the associated performance metrics are often distinct. Regional planners tasked with designing future supply systems therefore require multi-criteria analysis methods and tools to determine a suitable combination of technologies and scale of investments. Previous research focused on optimizing system development strategy with respect to a single design objective, leading to potentially negative outcomes for other important sustainability metrics. This paper addresses this limitation, and presents a flexible multi-criteria model analysis framework that is applicable to long-term energy and water supply planning at national or regional scales in an interactive setup with decision-makers. The framework incorporates a linear systems-engineering model of the coupled supply technologies and inter-provincial transmission networks. The multi-criteria analysis approach enables the specification of diverse decision-making preferences for disparate criteria, and leads to quantitative understanding of trade-offs between the resulting criteria values of the corresponding Pareto-optimal solutions. A case study of the water-stressed nation of Saudi Arabia explores preferences combining aspiration and reservation levels in terms of cost, water sustainability and electricity sector CO2 emissions. The analysis reveals a suite of trade-off solutions, in which potential integrated water-energy system configurations remain relatively ambitious from both an economic and environmental perspective. The results highlight the importance of identifying suitable tradeoffs between water and energy sustainability objectives during the formulation of coupled transformation strategies

    The IIASA Energy-Multi Criteria Analysis Tool (ENE-MCA)

    Get PDF
    Researchers at the International Institute for Applied Systems Analysis (IIASA), building on work carried out within the framework of the Global Energy Assessment (GEA), have developed an interactive web-based scenario analysis tool that permits the concurrent assessment of synergies and trade-offs between multiple energy objectives at the global scale. This software, known as the IIASA Energy-Multi Criteria Analysis Policy Tool (ENE-MCA), is designed to assist national policy makers in their strategic policy planning processes. The tool extends work undertaken for the GEA and, as such, is built on the extensive set of global energy and environmental scenarios that have been generated as part of the GEA process. This document serves as an introduction to the ENE-MCA tool and as a brief manual for the typical user

    Catalytic cracking performance of alkaline-treated zeolite Beta in the terms of acid sites properties and their accessibility

    Full text link
    The zeolite Beta is considered as a promising additive for FCC catalyst in diesel oil production. In this article, it is shown that hierarchical zeolite Beta obtained by an optimized desilication procedure increases diesel and propylene yields during gas oil cracking reaction. The alkaline treatment of zeolite Beta (Si/Al = 22) by desilication with NaOH and NaOH&TBAOH was investigated. The catalytic performance improvement of desilicated zeolite Beta has been rationalized by deep characterization of the samples including X-ray diffraction, low-temperature adsorption of nitrogen, solid-state 29Si MAS NMR and IR studies of acidity. Finally, the catalytic performance of the zeolites Beta was evaluated in the cracking of n-decane, 1,3,5-tri-iso-propylbenzene, and vacuum gas oil. It was found that desilication with NaOH&TBAOH ensures the more uniform intracrystalline mesoporosity with the formation of narrower mesopores, while preserving full crystallinity resulting in catalysts with the most appropriated acidity and then with better catalytic performance.Also, M.C.I.L., J.M.T. and F.R. thank financial support from the Spanish Ministry of Economy and Competitiveness through the Severo Ochoa program (SEV-2012-0267) as well as operating grants Consolider Ingenio Multicat (CSD-2009-00050) and MAT-2012-3856-0O2-01.Tarach, K.; Gora-Marek, K.; Tekla, J.; Brylewska, K.; Datka, J.; Mlekodaj, K.; Makowski, W.... (2014). Catalytic cracking performance of alkaline-treated zeolite Beta in the terms of acid sites properties and their accessibility. Journal of Catalysis. 312:46-57. https://doi.org/10.1016/j.jcat.2014.01.009S465731

    Specific cation effects at aqueous solution-vapor interfaces: Surfactant-like behavior of Li<sup>+</sup> revealed by experiments and simulations

    Get PDF
    It is now well established by numerous experimental and computational studies that the adsorption propensities of inorganic anions conform to the Hofmeister series. The adsorption propensities of inorganic cations, such as the alkali metal cations, have received relatively little attention. Here we use a combination of liquid-jet X-ray photoelectron experiments and molecular dynamics simulations to investigate the behavior of K+ and Li+ ions near the interfaces of their aqueous solutions with halide ions. Both the experiments and the simulations show that Li+ adsorbs to the aqueous solution−vapor interface, while K+ does not. Thus, we provide experimental validation of the “surfactant-like” behavior of Li+ predicted by previous simulation studies. Furthermore, we use our simulations to trace the difference in the adsorption of K+ and Li+ ions to a difference in the resilience of their hydration shells

    Have Gender Gaps in Math Closed? Achievement, Teacher Perceptions, and Learning Behaviors Across Two ECLS-K Cohorts

    Get PDF
    Studies using data from the Early Childhood Longitudinal Study–Kindergarten Class of 1998–1999 (ECLS-K:1999) revealed gender gaps in mathematics achievement and teacher perceptions. However, recent evidence suggests that gender gaps have closed on state tests, raising the question of whether such gaps are absent in the ECLS-K:2011 cohort. Extending earlier analyses, this study compares the two ECLS-K cohorts, exploring gaps throughout the achievement distribution and examining whether learning behaviors might differentially explain gaps more at the bottom than the top of the distribution. Overall, this study reveals remarkable consistency across both ECLS-K cohorts, with the gender gap developing early among high achievers and spreading quickly throughout the distribution. Teachers consistently rate girls’ mathematical proficiency lower than that of boys with similar achievement and learning behaviors. Gender differences in learning approaches appear to be fairly consistent across the achievement distribution, but girls’ more studious approaches appear to have more payoff at the bottom of the distribution than at the top. Questions remain regarding why boys outperform girls at the top of the distribution, and several hypotheses are discussed. Overall, the persistent ECLS-K patterns make clear that girls’ early mathematics learning experiences merit further attention
    • 

    corecore