8,354 research outputs found

    Development of the cancer-related loneliness assessment tool:Using the findings of a qualitative analysis to generate questionnaire items

    Get PDF
    The aim of this research was to develop a tool to identify and assess the qualities of cancer-related loneliness in adult cancer survivors who have completed treatment. In addition to reporting the development of the tool, we explicate the process of using the findings of a qualitative analysis to generate questionnaire items, as currently little guidance exists on this topic. The findings of our qualitative research exploring the experience of loneliness in adult cancer survivors who had completed treatment, together with the findings of our concept analysis of loneliness, were used to develop an assessment tool for cancer-related loneliness following treatment completion. Cognitive testing was undertaken to assess fidelity of comprehension and feasibility in administration. The Cancer-Related Loneliness Assessment Tool is a 10-item self-report questionnaire capturing the essential elements of cancer-related loneliness following treatment completion. Experts believed the questionnaire to be face-valid and usable in clinical practice, and preliminary cognitive testing indicated that the items generate the information intended and individuals have little trouble completing the tool. Following further development work, the tool could be employed to identify cancer-related loneliness following treatment completion. It could also aid with the development/adaptation and evaluation of person-centred interventions to address such loneliness.</p

    Global modeling of secondary organic aerosol formation from aromatic hydrocarbons: high- vs low-yield pathways

    Get PDF
    Formation of SOA from the aromatic species toluene, xylene, and, for the first time, benzene, is added to a global chemical transport model. A simple mechanism is presented that accounts for competition between low and high-yield pathways of SOA formation, wherein secondary gas-phase products react further with either nitrogen oxide (NO) or hydroperoxy radical (HO2) to yield semi- or non-volatile products, respectively. Aromatic species yield more SOA when they react with OH in regions where the [NO]/[HO2] ratios are lower. The SOA yield thus depends upon the distribution of aromatic emissions, with biomass burning emissions being in areas with lower [NO]/[HO2] ratios, and the reactivity of the aromatic with respect to OH, as a lower initial reactivity allows transport away from industrial source regions, where [NO]/[HO2] ratios are higher, to more remote regions, where this ratio is lower and, hence, the ultimate yield of SOA is higher. As a result, benzene is estimated to be the most important aromatic species with regards to formation of SOA, with a total production nearly equal that of toluene and xylene combined. In total, while only 39% percent of the aromatic species react via the low-NOx pathway, 72% of the aromatic SOA is formed via this mechanism. Predicted SOA concentrations from aromatics in the Eastern United States and Eastern Europe are actually largest during the summer, when the [NO]/[HO2] ratio is lower. Global production of SOA from aromatic sources is estimated at 3.5 Tg/yr, resulting in a global burden of 0.08 Tg, twice as large as previous estimates. The contribution of these largely anthropogenic sources to global SOA is still small relative to biogenic sources, which are estimated to comprise 90% of the global SOA burden, about half of which comes from isoprene. Compared to recent observations, it would appear there are additional pathways beyond those accounted for here for production of anthropogenic SOA. However, owing to differences in spatial distributions of sources and seasons of peak production, there are still regions in which aromatic SOA produced via the mechanisms identified here are predicted to contribute substantially to, and even dominate, the local SOA concentrations, such as outflow regions from North America and South East Asia during the wintertime, though total SOA concentrations there are small (~0.1 μg/m^³)

    A graphene transmon operating at 1 T

    Full text link
    A superconducting transmon qubit resilient to strong magnetic fields is an important component for proposed topological and hybrid quantum computing (QC) schemes. Transmon qubits consist of a Josephson junction (JJ) shunted by a large capacitance, coupled to a high quality factor superconducting resonator. In conventional transmon devices, the JJ is made from an Al/AlOx_x/Al tunnel junction which ceases operation above the critical magnetic field of Al, 10 mT. Alternative junction technologies are therefore required to push the operation of these qubits into strong magnetic fields. Graphene JJs are one such candidate due to their high quality, ballistic transport and electrically tunable critical current densities. Importantly the monolayer structure of graphene protects the JJ from orbital interference effects that would otherwise inhibit operation at high magnetic field. Here we report the integration of ballistic graphene JJs into microwave frequency superconducting circuits to create the first graphene transmons. The electric tunability allows the characteristic band dispersion of graphene to be resolved via dispersive microwave spectroscopy. We demonstrate that the device is insensitive to the applied field and perform energy level spectroscopy of the transmon at 1 T, more than an order of magnitude higher than previous studies.Comment: attached supplementary materia

    Late-onset bloodstream infection and perturbed maturation of the gastrointestinal microbiota in premature infants

    Get PDF
    Late-onset bloodstream infection (LO-BSI) is a common complication of prematurity, and lack of timely diagnosis and treatment can have life-threatening consequences. We sought to identify clinical characteristics and microbial signatures in the gastrointestinal microbiota preceding diagnosis of LO-BSI in premature infants.Daily faecal samples and clinical data were collected over two years from 369 premature neonates (<32 weeks gestation). We analysed samples from 22 neonates who developed LO-BSI and 44 matched control infants. Next-generation sequencing of 16S rRNA gene regions amplified by PCR from total faecal DNA was used to characterise the microbiota of faecal samples preceding diagnosis from infants with LO-BSI and controls. Culture of selected samples was undertaken, and bacterial isolates identified using MALDI-TOF. Antibiograms from bloodstream and faecal isolates were compared to explore strain similarity.From the week prior to diagnosis, infants with LO-BSI had higher proportions of faecal aerobes/facultative anaerobes compared to controls. Risk factors for LO-BSI were identified by multivariate analysis. Enterobacteriaceal sepsis was associated with antecedent multiple lines, low birth weight and a faecal microbiota with prominent Enterobacteriaceae. Staphylococcal sepsis was associated with Staphylococcus OTU faecal over-abundance, and the number of days prior to diagnosis of mechanical ventilation and of the presence of centrally-placed lines. In 12 cases, the antibiogram of the bloodstream isolate matched that of a component of the faecal microbiota in the sample collected closest to diagnosis.The gastrointestinal tract is an important reservoir for LO-BSI organisms, pathogens translocating across the epithelial barrier. LO-BSI is associated with an aberrant microbiota, with abundant staphylococci and Enterobacteriaceae and a failure to mature towards predominance of obligate anaerobes

    Incorporating interactive 3-dimensional graphics in astronomy research papers

    Full text link
    Most research data collections created or used by astronomers are intrinsically multi-dimensional. In contrast, all visual representations of data presented within research papers are exclusively 2-dimensional. We present a resolution of this dichotomy that uses a novel technique for embedding 3-dimensional (3-d) visualisations of astronomy data sets in electronic-format research papers. Our technique uses the latest Adobe Portable Document Format extensions together with a new version of the S2PLOT programming library. The 3-d models can be easily rotated and explored by the reader and, in some cases, modified. We demonstrate example applications of this technique including: 3-d figures exhibiting subtle structure in redshift catalogues, colour-magnitude diagrams and halo merger trees; 3-d isosurface and volume renderings of cosmological simulations; and 3-d models of instructional diagrams and instrument designs.Comment: 18 pages, 7 figures, submitted to New Astronomy. For paper with 3-dimensional embedded figures, see http://astronomy.swin.edu.au/s2plot/3dpd

    Resonant inelastic x-ray scattering in single-crystal superconducting PrFeAsO0.7

    Full text link
    Resonant inelastic x-ray scattering (RIXS) spectra at the Fe K-edge were measured for a single crystal of the iron oxypnictide superconductor PrFeAsO0.7 (Tc=42 K). They disclose a weak, broad feature centered around 4.5 eV energy loss, which is slightly resonantly enhanced when the incident energy is tuned in the vicinity of the 4p white line. We tentatively ascribe it to the charge-transfer excitation between As 4p and Fe 3d.Comment: 2 pages, 2 figure

    Exclusive Photoproduction of Large Momentum-Transfer K and K* Mesons

    Full text link
    The reactions gamma p -> K+ Lambda and gamma p -> K* Lambda are analyzed within perturbative QCD, allowing for diquarks as quasi-elementary constituents of baryons. The diquark-model parameters and the quark-diquark distribution amplitudes of proton and Lambda are taken from previous investigations of electromagnetic baryon form factors and Compton-scattering off protons. Unpolarized differential cross sections and polarization observables are computed for different choices of the K and K* distribution amplitudes. The asymptotic form of the K distribution amplitude (proportional to x1 x2) is found to provide a satisfactory description of the K photoproduction data.Comment: 32 pages, 7 figures available as tared, compressed and uuencoded PS-file

    Modelling background intensity in Affymetrix Genechips

    Full text link
    DNA microarrays are devices that are able, in principle, to detect and quantify the presence of specific nucleic acid sequences in complex biological mixtures. The measurement consists in detecting fluorescence signals from several spots on the microarray surface onto which different probe sequences are grafted. One of the problems of the data analysis is that the signal contains a noisy background component due to non-specific binding. This paper presents a physical model for background estimation in Affymetrix Genechips. It combines two different approaches. The first is based on the sequence composition, specifically its sequence dependent hybridization affinity. The second is based on the strong correlation of intensities from locations which are the physical neighbors of a specific spot on the chip. Both effects are incorporated in a background functional which contains 24 free parameters, fixed by minimization on a training data set. In all data analyzed the sequence specific parameters, obtained by minimization, are found to strongly correlate with empirically determined stacking free energies for RNA/DNA hybridization in solution. Moreover, there is an overall agreement with experimental background data and we show that the physics-based model proposed in this paper performs on average better than purely statistical approaches for background calculations. The model thus provides an interesting alternative method for background subtraction schemes in Affymetrix Genechips.Comment: 8 pages, 4 figure
    corecore