1,062 research outputs found
DAC-Less amplifier-less generation and transmission of QAM signals using sub-volt silicon-organic hybrid modulators
We demonstrate generation and transmission of optical signals by directly interfacing highly efficient silicon-organic hybrid (SOH) modulators to binary output ports of a field-programmable gate array. Using an SOH Mach-Zehnder modulator (MZM) and an SOH IQ modulator we generate ON-OFF- keying and binary phase-shift keying signals as well as quadrature phase-shift keying and 16-state quadrature amplitude modulation (16QAM) formats. Peak-to-peak voltages amount to only 0.27 V-pp for driving the MZM and 0.41 V-pp for the IQ modulator. Neither digital-to-analog converters nor drive amplifiers are required, and the RF energy consumption in the modulator amounts to record-low 18 fJ/bit for 16QAM signaling
Discovery of CH and OH in the -513 km s-1 Ejecta of Eta Carinae
The very massive star, Eta Carinae, is enshrouded in an unusual complex of
stellar ejecta, which is highly depleted in C and O, and enriched in He and N.
This circumstellar gas gives rise to distinct absorption components
corresponding to at least 20 different velocities along the line-of-sight. The
velocity component at -513 kms-1 exhibits very low ionization with
predominantly neutral species of iron-peak elements. Our statistical
equilibrium/photoionization modeling indicates that the low temperature (T =
760 K) and high density (n_H=10^7 cm^-3) of the -513 kms-1 component is
conducive to molecule formation including those with the elements C and O.
Examination of echelle spectra obtained with the Space Telescope Imaging
Spectrograph (STIS) aboard the confirms the model's predictions. The molecules,
H_2, CH, and most likely OH, have been identified in the -513 kms-1 absorption
spectrum. This paper presents the analysis of the HST/STIS spectra with the
deduced column densities for CH, OH and C I, and upper limit for CO. It is
quite extraordinary to see molecular species in a cool environment at such a
high velocity. The sharp molecular and ionic absorptions in this extensively
CNO- processed material offers us a unique environment for studying the
chemistry, dust formation processes, and nucleosynthesis in the ejected layers
of a highly evolved massive star.Comment: tentatively scheduled for the ApJ 1 September 2005, v630, 1 issu
The gravitational analogue to the hydrogen atom (A summer study at the borders of quantum mechanics and general relativity)
This article reports on a student summer project performed in 2006 at the
University of Frankfurt. It is addressed to undergraduate students familiar
with the basic principles of relativistic quantum mechanics and general
relativity. The aim of the project was to study the Dirac equation in curved
space time. To obtain the general relativistic Dirac equation we use the
formulation of gravity as a gauge theory in the first part. After these general
considerations we restrict the further discussion to the special case of the
Schwarzschild metric. This setting corresponds to the hydrogen atom, with the
electromagnetic field replaced by gravity. Although there is a singularity at
the event horizon it turns out that a regular solution of the time independent
Dirac equation exists. Finally the Dirac equation is solved numerically using
suitable boundary conditions.Comment: 19 pages, 3 figure
Geometry-dependent critical currents in superconducting nanocircuits
In this paper we calculate the critical currents in thin superconducting
strips with sharp right-angle turns, 180-degree turnarounds, and more
complicated geometries, where all the line widths are much smaller than the
Pearl length . We define the critical current as the
current that reduces the Gibbs free-energy barrier to zero. We show that
current crowding, which occurs whenever the current rounds a sharp turn, tends
to reduce the critical current, but we also show that when the radius of
curvature is less than the coherence length this effect is partially
compensated by a radius-of-curvature effect. We propose several patterns with
rounded corners to avoid critical-current reduction due to current crowding.
These results are relevant to superconducting nanowire single-photon detectors,
where they suggest a means of improving the bias conditions and reducing dark
counts. These results also have relevance to normal-metal nanocircuits, as
these patterns can reduce the electrical resistance, electromigration, and hot
spots caused by nonuniform heating.Comment: 29 pages, 24 figure
High precision measurement of the associated strangeness production in proton proton interactions
A new high precision measurement of the reaction pp -> pK+Lambda at a beam
momentum of 2.95 GeV/c with more than 200,000 analyzed events allows a detailed
analysis of differential observables and their inter-dependencies. Correlations
of the angular distributions with momenta are examined. The invariant mass
distributions are compared for different regions in the Dalitz plots. The cusp
structure at the N Sigma threshold is described with the Flatt\'e formalism and
its variation in the Dalitz plot is analyzed.Comment: accepted for publication in Eur. Phys. J.
First Model-Independent Measurement of the Spin Triplet Scattering Length from Final State Interaction in the Reaction
The reaction has been measured with the
COSY-TOF detector at a beam momentum of . The polarized
proton beam enables the measurement of the beam analyzing power by the
asymmetry of the produced kaon (). This observable allows the
spin triplet scattering length to be extracted for the first time
model independently from the final-state interaction in the reaction. The
obtained value is . This value is
compatible with theoretical predictions and results from model-dependent
analyses.Comment: Revised version as accepted for publication in PR
Robots that can adapt like animals
As robots leave the controlled environments of factories to autonomously
function in more complex, natural environments, they will have to respond to
the inevitable fact that they will become damaged. However, while animals can
quickly adapt to a wide variety of injuries, current robots cannot "think
outside the box" to find a compensatory behavior when damaged: they are limited
to their pre-specified self-sensing abilities, can diagnose only anticipated
failure modes, and require a pre-programmed contingency plan for every type of
potential damage, an impracticality for complex robots. Here we introduce an
intelligent trial and error algorithm that allows robots to adapt to damage in
less than two minutes, without requiring self-diagnosis or pre-specified
contingency plans. Before deployment, a robot exploits a novel algorithm to
create a detailed map of the space of high-performing behaviors: This map
represents the robot's intuitions about what behaviors it can perform and their
value. If the robot is damaged, it uses these intuitions to guide a
trial-and-error learning algorithm that conducts intelligent experiments to
rapidly discover a compensatory behavior that works in spite of the damage.
Experiments reveal successful adaptations for a legged robot injured in five
different ways, including damaged, broken, and missing legs, and for a robotic
arm with joints broken in 14 different ways. This new technique will enable
more robust, effective, autonomous robots, and suggests principles that animals
may use to adapt to injury
3D mappings by generalized joukowski transformations
The classical Joukowski transformation plays an important role in di erent applications of conformal mappings,
in particular in the study of
ows around the so-called Joukowski airfoils. In the 1980s H. Haruki and M.
Barran studied generalized Joukowski transformations of higher order in the complex plane from the view point
of functional equations. The aim of our contribution is to study the analogue of those generalized Joukowski
transformations in Euclidean spaces of arbitrary higher dimension by methods of hypercomplex analysis. They
reveal new insights in the use of generalized holomorphic functions as tools for quasi-conformal mappings.
The computational experiences focus on 3D-mappings of order 2 and their properties and visualizations for
di erent geometric con gurations, but our approach is not restricted neither with respect to the dimension
nor to the order.Financial support from "Center for Research and Development in Mathematics and Applications" of the University of Aveiro, through the Portuguese Foundation for Science and Technology (FCT), is gratefully acknowledged. The research of the first author was also supported by the FCT under the fellowship SFRH/BD/44999/2008. Moreover, the authors would like to thank the anonymous referees for their helpful comments and suggestions which improved greatly the final manuscript
- …