10 research outputs found

    Urban Airborne Lead: X-Ray Absorption Spectroscopy Establishes Soil as Dominant Source

    Get PDF
    BACKGROUND: Despite the dramatic decrease in airborne lead over the past three decades, there are calls for regulatory limits on this potent pediatric neurotoxin lower even than the new (2008) US Environmental Protection Agency standard. To achieve further decreases in airborne lead, what sources would need to be decreased and what costs would ensue? Our aim was to identify and, if possible, quantify the major species (compounds) of lead in recent ambient airborne particulate matter collected in El Paso, TX, USA. METHODOLOGY/PRINCIPAL FINDINGS: We used synchrotron-based XAFS (x-ray absorption fine structure) to identify and quantify the major Pb species. XAFS provides molecular-level structural information about a specific element in a bulk sample. Pb-humate is the dominant form of lead in contemporary El Paso air. Pb-humate is a stable, sorbed complex produced exclusively in the humus fraction of Pb-contaminated soils; it also is the major lead species in El Paso soils. Thus such soil must be the dominant source, and its resuspension into the air, the transfer process, providing lead particles to the local air. CONCLUSIONS/SIGNIFICANCE: Current industrial and commercial activity apparently is not a major source of airborne lead in El Paso, and presumably other locales that have eliminated such traditional sources as leaded gasoline. Instead, local contaminated soil, legacy of earlier anthropogenic Pb releases, serves as a long-term reservoir that gradually leaks particulate lead to the atmosphere. Given the difficulty and expense of large-scale soil remediation or removal, fugitive soil likely constrains a lower limit for airborne lead levels in many urban settings

    Greenhouse gas emissions from a Western Australian finfish supply chain

    Get PDF
    Greenhouse gas (GHG) emissions in the form of carbon dioxide equivalent (CO2 - eq) from two Western Australian finfish supply chains, from harvest to retail outlet, were measured using streamlined life cycle assessment methodology. The identification of interventions to potentially reduce the GHG emissions was determined from the results obtained. Electricity consumption contributed to the highest GHG emissions within the supply chains measured, followed by refrigeration gas leakage and disposal of unused fish portions. Potential cleaner production strategies (CPS) to reduce these impacts included installing solar panels, recycling the waste, good housekeeping in refrigeration equipment maintenance, and input substitution of refrigeration gas. The results show a combination of these strategies have the potential to reduce up to 35% of the total GHG emissions from fillet harvest, processing and retail

    Life cycle assessment in green chemistry: overview of key parameters and methodological concerns

    No full text
    Several articles within the area of green chemistry often promote new techniques or products as 'green' or 'more environmentally benign' than their conventional counterpart although these articles often do not quantitatively assess the environmental performance. In order to do this, life cycle assessment (LCA) is a valuable methodology. However, on the planning stage, a full-scale LCA is considered to be too time consuming and complicated. Two reasons for this have been recognised, the method is too comprehensive and it is hard to find inventory data. In this review, key parameters are presented with the purpose to reduce the time-consuming steps in LCA. In this review, several LCAs of so-called 'green chemicals' are analysed and key parameters and methodological concerns are identified. Further, some conclusions on the environmental performance of chemicals were drawn. For fossil-based platform chemicals several LCAs exists but for chemicals produced with industrial biotechnology or from renewable resources the number of LCAs is limited, with the exception of biofuels, for which a large number of studies are made. In the review, a significant difference in the environmental performance of bulk and fine chemicals was identified. The environmental performance of bulk chemicals are closely connected to the production of the raw material and thereby different land use aspects. Here, a lot can be learnt from biofuel LCAs. In many of the reviewed articles focusing on bulk chemicals a comparison regarding fossil and renewable raw material was done. In most of the comparisons the renewable alternative turned out to be more environmentally preferable, especially for the impact on GWP and energy use. However, some environmental concerns were identified as important to include to assess overall environmental concern, for example eutrophication and the use of land. To assess the environmental performance of green chemicals, quantitative methods are needed. For this purpose, both simple metrics and more comprehensive methods have been developed, one recognised method being LCA. However, this method is often too time consuming to be valuable in the process planning stage. This is partly due to a lack of available inventory data, but also because the method itself is too comprehensive. Here, key parameters for the environmental performance and methodological concerns were described to facilitate a faster and simpler use of LCA of green chemicals in the future

    Life Cycle Assessment of Greenhouse Gas Emissions

    No full text
    corecore