42 research outputs found

    Micro-crystalline inclusions analysis by PIXE and RBS

    Get PDF
    A characteristic feature of the nuclear microprobe using a 3 MeV proton beam is the long range of particles (around 70 \mu m in light matrices). The PIXE method, with EDS analysis and using the multilayer approach for treating the X-ray spectrum allows the chemistry of an intra-crystalline inclusion to be measured, provided the inclusion roof and thickness at the impact point of the beam (Z and e, respectively) are known (the depth of the inclusion floor is Z + e). The parameter Z of an inclusion in a mineral can be measured with a precision of around 1 \mu m using a motorized microscope. However, this value may significantly depart from Z if the analyzed inclusion has a complex shape. The parameter e can hardly be measured optically. By using combined RBS and PIXE measurements, it is possible to obtain the geometrical information needed for quantitative elemental analysis. This paper will present measurements on synthetic samples to investigate the advantages of the technique, and also on natural solid and fluid inclusions in quartz. The influence of the geometrical parameters will be discussed with regard to the concentration determination by PIXE. In particular, accuracy of monazite micro-inclusion dating by coupled PIXE-RBS will be presented

    Alluvial record of an early Eocene hyperthermal within the Castissent Formation, the Pyrenees, Spain

    Get PDF
    The late Palaeocene to the middle Eocene (57.5 to 46.5 Ma) recorded a total of 39 hyperthermals – periods of rapid global warming documented by prominent negative carbon isotope excursions (CIEs) as well as peaks in iron content – have been recognized in marine cores. Documenting how the Earth system responded to rapid climatic shifts during hyperthermals provides fundamental information to constrain climatic models. However, while hyperthermals have been well documented in the marine sedimentary record, only a few have been recognized and described in continental deposits, thereby limiting our ability to understand the effect and record of global warming on terrestrial systems. Hyperthermals in the continental record could be a powerful correlation tool to help connect marine and continental deposits, addressing issues of environmental signal propagation from land to sea. In this study, we generate new stable carbon isotope data (ή13C values) across the well-exposed and time-constrained fluvial sedimentary succession of the early Eocene Castissent Formation in the south central Pyrenees (Spain). The ή13C values of pedogenic carbonate reveal – similarly to the global records – stepped CIEs, culminating in a minimum ή13C value that we correlate with the hyperthermal event “U” at ca. 50 Ma. This general trend towards more negative values is most probably linked to higher primary productivity leading to an overall higher respiration of soil organic matter during these climatic events. The relative enrichment in immobile elements (Zr, Ti, Al) and higher estimates of mean annual precipitation together with the occurrence of small iron oxide and iron hydroxide nodules during the CIEs suggest intensification of chemical weathering and/or longer exposure of soils in a highly seasonal climate. The results show that even relatively small-scale hyperthermals compared with their prominent counterparts, such as PETM, ETM2, and ETM3, can leave a recognizable signature in the terrestrial stratigraphic record, providing insights into the dynamics of the carbon cycle in continental environments during these events

    Amphibole and apatite insights into the evolution and mass balance of Cl and S in magmas associated with porphyry copper deposits

    Get PDF
    Chlorine and sulfur are of paramount importance for supporting the transport and deposition of ore metals at magmatic–hydrothermal systems such as the Coroccohuayco Fe–Cu–Au porphyry–skarn deposit, Peru. Here, we used recent partitioning models to determine the Cl and S concentration of the melts from the Coroccohuayco magmatic suite using apatite and amphibole chemical analyses. The pre-mineralization gabbrodiorite complex hosts S-poor apatite, while the syn- and post-ore dacitic porphyries host S-rich apatite. Our apatite data on the Coroccohuayco magmatic suite are consistent with an increasing oxygen fugacity (from the gabbrodiorite complex to the porphyries) causing the dominant sulfur species to shift from S2− to S6+ at upper crustal pressure where the magmas were emplaced. We suggest that this change in sulfur speciation could have favored S degassing, rather than its sequestration in magmatic sulfides. Using available partitioning models for apatite from the porphyries, pre-degassing S melt concentration was 20–200 ppm. Estimates of absolute magmatic Cl concentrations using amphibole and apatite gave highly contrasting results. Cl melt concentrations obtained from apatite (0.60 wt% for the gabbrodiorite complex; 0.2–0.3 wt% for the porphyries) seems much more reasonable than those obtained from amphibole which are very low (0.37 wt% for the gabbrodiorite complex; 0.10 wt% for the porphyries). In turn, relative variations of the Cl melt concentrations obtained from amphibole during magma cooling are compatible with previous petrological constraints on the Coroccohuayco magmatic suite. This confirms that the gabbrodioritic magma was initially fluid undersaturated upon emplacement, and that magmatic fluid exsolution of the gabbrodiorite and the pluton rooting the porphyry stocks and dikes were emplaced and degassed at 100–200 MPa. Finally, mass balance constraints on S, Cu and Cl were used to estimate the minimum volume of magma required to form the Coroccohuayco deposit. These three estimates are remarkably consistent among each other (ca. 100 km3) and suggest that the Cl melt concentration is at least as critical as that of Cu and S to form an economic mineralization

    Genesis of high-sulfidation vinciennite-bearing Cu-As-Sn (+/-Au) assemblage from the Radka epithermal copper deposit, Bulgaria: evidence from mineralogy and infrared microthermometry of enargite

    No full text
    The Radka deposit is one of the largest Cu–Au epithermal deposits related to Late Cretaceous volcanic arc-type magmatic activity in the Panagyurishte ore region, central part of the Srednogorie zone, Bulgaria. The mineralogical and geochemical features of a vinciennite-bearing Cu–As–Sn (± Au) assemblage at Radka show very similar characteristics to those in other vinciennite-bearing high-sulfidation epithermal deposits worldwide. The assemblage consists of enargite, Cu-excess tennantite, chalcopyrite, gold, vinciennite, colusite, and minor covellite, within a gangue of barite, illite, and quartz. A detailed electronmicroprobe study of vinciennite and associated minerals reveals the heterovalency of Cu and Fe. New data on the composition of vinciennite sheds light on aspects of its crystal chemistry, such as incorporation of Cu2+ and Fe3+ and Sn4+ Ge4+ substitution, and leads us to propose a new empirical formula: Cu+8Cu2+2Fe3+3(Fe,Cu)2+(Sn,Ge)4+(As,Sb)5+S162–. Infrared microthermometry of enargite-hosted fluid inclusions provides constraints on the conditions of deposition of this unusual assemblage in the context of the evolution of the magma-related ore-forming system at Radka. The assemblage was formed by oxidized and slightly acid fluids, with a dominantly magmatic signature, high fugacity of sulfur and intermediate salinity (about 10 wt.% eq. NaCl) at a temperature of about 275°C. In view of the geology of the Radka deposit, its mineralogical and geochemical peculiarities, ore textures, type of hydrothermal alteration and the character of the fluids, we interpret the deposit as a deep part of a high-sulfidation epithermal mineralization, possibly genetically related to a porphyry copper system
    corecore