279 research outputs found

    A Monitoring Campaign for Luhman 16AB. I. Detection of Resolved Near-Infrared Spectroscopic Variability

    Get PDF
    [abbreviated] We report resolved near-infrared spectroscopic monitoring of the nearby L dwarf/T dwarf binary WISE J104915.57-531906.1AB (Luhman 16AB), as part of a broader campaign to characterize the spectral energy distribution and temporal variability of this system. A continuous 45-minute sequence of low-resolution IRTF/SpeX data spanning 0.8-2.4 micron were obtained, concurrent with combined-light optical photometry with ESO/TRAPPIST. Our spectral observations confirm the flux reversal of this binary, and we detect a wavelength-dependent decline in the relative spectral fluxes of the two components coincident with a decline in the combined-light optical brightness of the system over the course of the observation. These data are successfully modeled as a combination of brightness and color variability in the T0.5 Luhman 16B, consistent cloud variations; and no significant variability in L7.5 Luhman 16A. We estimate a peak-to-peak amplitude of 13.5% at 1.25 micron over the full lightcurve. Using a two-spot brightness temperature model, we infer an average cloud covering fraction of ~30-55% for Luhman 16B, varying by 15-30% over a rotation period. A Rhines scale interpretation for the size of the variable features explains an apparent correlation between period and amplitude for three highly variable T dwarfs, and predicts relatively fast winds (1-3 km/s) for Luhman 16B consistent with lightcurve evolution on an advective time scale (1-3 rotation periods). Our observations support the model of a patchy disruption of the mineral cloud layer as a universal feature of the L dwarf/T dwarf transition.Comment: 11 pages, 7 figures; accepted for publication in Astrophysical Journa

    Probing the Neutron-Capture Nucleosynthesis History of Galactic Matter

    Full text link
    The heavy elements formed by neutron capture processes have an interesting history from which we can extract useful clues to and constraints upon both the characteristics of the processes themselves and the star formation and nucleosynthesis history of Galactic matter. Of particular interest in this regard are the heavy element compositions of extremely metal-deficient stars. At metallicities [Fe/H] <= -2.5, the elements in the mass region past barium (A >= 130-140 have been found (in non carbon-rich stars) to be pure r-process products. The identification of an environment provided by massive stars and associated Type II supernovae as an r-process site seems compelling. Increasing levels of heavy s-process (e.g., barium) enrichment with increasing metallicity, evident in the abundances of more metal-rich halo stars and disk stars, reflect the delayed contributions from the low- and intermediate-mass (M \~ 1-3 Msol) stars that provide the site for the main s-process nucleosynthesis component during the AGB phase of their evolution. New abundance data in the mass region 60 <~ A <~ 130 is providing insight into the identity of possible alternative r-process sites. We review recent observational studies of heavy element abundances both in low metallicity halo stars and in disk stars, discuss the observed trends in light of nucleosynthesis theory, and explore some implications of these results for Galactic chemical evolution, nucleosynthesis, and nucleocosmochronology.Comment: 47 pages, 2 tables, 11 figures; To appear in PAS

    Spectropolarimetry of the Deep Impact target comet 9P/Tempel 1 with HiVIS

    Get PDF
    High resolution spectropolarimetry of the Deep Impact target, comet 9P/ Tempel 1, was performed during the impact event on July 4th, 2005 with the HiVIS Spectropolarimeter and the AEOS 3.67m telescope on Haleakala, Maui. We observed atypical polarization spectra that changed significantly in the few hours after the impact. The polarization of scattered light as a function of wavelength is very sensitive to the size and composition (complex refractive index) of the scattering particles as well as the scattering geometry. As opposed to most observations of cometary dust, which show an increase in the linear polarization with the wavelength (at least in the visible domain and for phase angles greater than about 30%, a red polarization spectrum) observations of 9P/Tempel 1 at a phase angle of 41 degrees beginning 8 minutes after impact and centered at 6:30UT showed a polarization of 4% at 650 nm falling to 3% at 950 nm. The next observation, centered an hour later showed a polarization of 7% at 650 nm falling to 2% at 950nm. This corresponds to a spectropolarimetric gradient, or slope, of -0.9% per 1000 Angstroms 40 minutes after impact, decreasing to a slope of -2.3% per 1000 Angstroms an hour and a half after impact. This is an atypical blue polarization slope, which became more blue 1 hour after impact. The polarization values of 4% and 7% at 650nm are typical for comets at this scattering angle, whereas the low polarization of 2% and 3% at 950nm is not. We compare observations of comet 9P/Tempel 1 to that of a typical comet, C/2004 Machholz, at a phase angle of 30 degrees which showed a typical red slope, rising from 2% at 650nm to 3% at 950nm in two different observations (+1.0 and +0.9% per 1000 Angstroms).Comment: Icarus Deep Impact special issue, accepted Aug 28 200

    The binary near-Earth asteroid (175706) 1996 FG3 - An observational constraint on its orbital evolution

    Full text link
    Using our photometric observations taken between 1996 and 2013 and other published data, we derived properties of the binary near-Earth asteroid (175706) 1996 FG3 including new measurements constraining evolution of the mutual orbit with potential consequences for the entire binary asteroid population. We also refined previously determined values of parameters of both components, making 1996 FG3 one of the most well understood binary asteroid systems. We determined the orbital vector with a substantially greater accuracy than before and we also placed constraints on a stability of the orbit. Specifically, the ecliptic longitude and latitude of the orbital pole are 266{\deg} and -83{\deg}, respectively, with the mean radius of the uncertainty area of 4{\deg}, and the orbital period is 16.1508 +/- 0.0002 h (all quoted uncertainties correspond to 3sigma). We looked for a quadratic drift of the mean anomaly of the satellite and obtained a value of 0.04 +/- 0.20 deg/yr^2, i.e., consistent with zero. The drift is substantially lower than predicted by the pure binary YORP (BYORP) theory of McMahon and Scheeres (McMahon, J., Scheeres, D. [2010]. Icarus 209, 494-509) and it is consistent with the theory of an equilibrium between BYORP and tidal torques for synchronous binary asteroids as proposed by Jacobson and Scheeres (Jacobson, S.A., Scheeres, D. [2011]. ApJ Letters, 736, L19). Based on the assumption of equilibrium, we derived a ratio of the quality factor and tidal Love number of Q/k = 2.4 x 10^5 uncertain by a factor of five. We also derived a product of the rigidity and quality factor of mu Q = 1.3 x 10^7 Pa using the theory that assumes an elastic response of the asteroid material to the tidal forces. This very low value indicates that the primary of 1996 FG3 is a 'rubble pile', and it also calls for a re-thinking of the tidal energy dissipation in close asteroid binary systems.Comment: Many changes based on referees comment

    Evolution of the polarization of the optical afterglow of the gamma-ray burst GRB 030329

    Full text link
    We report 31 polarimetric observations of the afterglow of GRB 030329 with high signal-to-noise and high sampling frequency. We establish the polarization light curve, detect sustained polarization at the percent level, and find significant variability of polarization degree and angle. The data imply that the afterglow magnetic field has small coherence length and is mostly random, probably generated by turbulence.Comment: Nature 426 (13. Nov. 2003), 2 figure

    Spitzer Transits of the Super-Earth GJ1214b and Implications for its Atmosphere

    Get PDF
    We observed the transiting super-Earth exoplanet GJ1214b using warm Spitzer at 4.5 μm wavelength during a 20 day quasi-continuous sequence in 2011 May. The goals of our long observation were to accurately define the infrared transit radius of this nearby super-Earth, to search for the secondary eclipse, and to search for other transiting planets in the habitable zone of GJ1214. We here report results from the transit monitoring of GJ1214b, including a reanalysis of previous transit observations by Désert et al. In total, we analyze 14 transits of GJ1214b at 4.5 μm, 3 transits at 3.6 μm, and 7 new ground-based transits in the I+z band. Our new Spitzer data by themselves eliminate cloudless solar composition atmospheres for GJ1214b, and methane-rich models from Howe & Burrows. Using our new Spitzer measurements to anchor the observed transit radii of GJ1214b at long wavelengths, and adding new measurements in I+z, we evaluate models from Benneke & Seager and Howe & Burrows using a χ^2 analysis. We find that the best-fit model exhibits an increase in transit radius at short wavelengths due to Rayleigh scattering. Pure water atmospheres are also possible. However, a flat line (no atmosphere detected) remains among the best of the statistically acceptable models, and better than pure water atmospheres. We explore the effect of systematic differences among results from different observational groups, and we find that the Howe & Burrows tholin-haze model remains the best fit, even when systematic differences among observers are considered

    The similarity of the interstellar comet 2I/Borisov to solar system comets from high resolution optical spectroscopy

    Get PDF
    Aims: 2I/Borisov (hereafter 2I) is the first visibly active interstellar comet observed in the Solar System, allowing us for the first time to sample the composition of a building block from another system. We report on the monitoring of 2I with the Ultraviolet-Visual Echelle Spectrograph, the high-resolution optical spectrograph of the ESO Very Large Telescope at Paranal, for four months from November 15, 2019 to March 16, 2020. Our goal is to characterise the activity and composition of 2I with respect to Solar System comets. Methods: We collected high-resolution spectra at 12 different epochs from 2.1 au pre-perihelion to 2.6 au post-perihelion. Results: On December 24 and 26, 2019, close to perihelion, we detected several OH lines of the 309 nm (0-0) band and derived a water production rate of 2.2 ± 0.2 × 10^26 molecules s^−1. The three [OI] forbidden oxygen lines were detected at different epochs and we derived a green-to-red doublet intensity ratio (G/R) of 0.31 ± 0.05 close to perihelion. The NH_2 ortho and para lines from various bands were measured and allowed us to derive an ortho-to-para abundance ratio (OPR) of 3.21 ± 0.15, corresponding to an OPR and spin temperature of ammonia of 1.11 ± 0.08 and 31 −5/+10 K, respectively. These values are consistent with the values usually measured for Solar System comets. Emission lines of the radicals NH (336 nm), CN (388 nm), CH (431 nm), and C2 (517 nm) were also detected. Several FeI and NiI lines were identified and their intensities were measured to provide a ratio of log (NiI/FeI) = 0.21 ± 0.18, which is in agreement with the value recently found in Solar System comets. Conclusions: Our high spectral resolution observations of 2I/Borisov and the associated measurements of the NH2 OPR and the Ni/Fe abundance ratio are remarkably similar to Solar System comets. Only the G/R ratio is unusually high, but it is consistent with the high abundance ratio of CO/H2O found by other investigators

    The first observed stellar occultations by the irregular satellite Phoebe (Saturn IX) and improved rotational period

    Get PDF
    peer reviewedWe report six stellar occultations by Phoebe (Saturn IX), an irregular satellite of Saturn, obtained between mid-2017 and mid-2019. The 2017 July 6 event was the first stellar occultation by an irregular satellite ever observed. The occultation chords were compared to a 3D shape model of the satellite obtained from Cassini observations. The rotation period available in the literature led to a sub-observer point at the moment of the observed occultations where the chords could not fit the 3D model. A procedure was developed to identify the correct sub-observer longitude. It allowed us to obtain the rotation period with improved precision compared to the currently known value from literature. We show that the difference between the observed and the predicted sub-observer longitude suggests two possible solutions for the rotation period. By comparing these values with recently observed rotational light curves and single- chord stellar occultations, we can identify the best solution for Phoebe's rotational period as 9.27365 ± 0.00002 h. From the stellar occultations, we also obtained six geocentric astrometric positions in the ICRS as realized by the Gaia DR2 with uncertainties at the 1-mas level

    Transit Detection in the MEarth Survey of Nearby M Dwarfs: Bridging the Clean-First, Search-Later Divide

    Full text link
    In the effort to characterize the masses, radii, and atmospheres of potentially habitable exoplanets, there is an urgent need to find examples of such planets transiting nearby M dwarfs. The MEarth Project is an ongoing effort to do so, as a ground-based photometric survey designed to detect exoplanets as small as 2 Earth radii transiting mid-to-late M dwarfs within 33 pc of the Sun. Unfortunately, identifying transits of such planets in photometric monitoring is complicated both by the intrinsic stellar variability that is common among these stars and by the nocturnal cadence, atmospheric variations, and instrumental systematics that often plague Earth-bound observatories. Here we summarize the properties of MEarth data gathered so far, and we present a new framework to detect shallow exoplanet transits in wiggly and irregularly-spaced light curves. In contrast to previous methods that clean trends from light curves before searching for transits, this framework assesses the significance of individual transits simultaneously while modeling variability, systematics, and the photometric quality of individual nights. Our Method for Including Starspots and Systematics in the Marginalized Probability of a Lone Eclipse (MISS MarPLE) uses a computationally efficient semi-Bayesian approach to explore the vast probability space spanned by the many parameters of this model, naturally incorporating the uncertainties in these parameters into its evaluation of candidate events. We show how to combine individual transits processed by MISS MarPLE into periodic transiting planet candidates and compare our results to the popular Box-fitting Least Squares (BLS) method with simulations. By applying MISS MarPLE to observations from the MEarth Project, we demonstrate the utility of this framework for robustly assessing the false alarm probability of transit signals in real data. [slightly abridged]Comment: accepted to the Astronomical Journal, 21 pages, 12 figure
    corecore