394 research outputs found
Combined shear/compression structural testing of asymmetric sandwich structures
Asymmetric sandwich technology can be applied in the design of lightweight, non-pressurized aeronautical structures such as those of helicopters. A test rig of asymmetric sandwich structures subjected to compression/shear loads was designed, validated, and set up. It conforms to the standard certification procedure for composite aeronautical structures set out in the “test pyramid”, a multiscale approach. The static tests until failure showed asymmetric sandwich structures to be extremely resistant, which, in the case of the tested specimen shape, were characterized by the absence of buckling and failure compressive strains up to 10,000 μ strains. Specimens impacted with perforation damage were also tested, enabling the original phenomenon of crack propagation to be observed step-by-step. The results of the completed tests thus enable the concept to be validated, and justify the possibility of creating a much larger machine to overcome the drawbacks linked to the use of small specimens
Zinc isotopes from archaeological bones provide reliable trophic level information for marine mammals
In marine ecology, dietary interpretations of faunal assemblages often rely on nitrogen isotopes as the main or only applicable trophic level tracer. We investigate the geographic variability and trophic level isotopic discrimination factors of bone zinc 66Zn/64Zn ratios (δ66Zn value) and compared it to collagen nitrogen and carbon stable isotope (δ15N and δ13C) values. Focusing on ringed seals (Pusa hispida) and polar bears (Ursus maritimus) from multiple Arctic archaeological sites, we investigate trophic interactions between predator and prey over a broad geographic area. All proxies show variability among sites, influenced by the regional food web baselines. However, δ66Zn shows a significantly higher homogeneity among different sites. We observe a clear trophic spacing for δ15N and δ66Zn values in all locations, yet δ66Zn analysis allows a more direct dietary comparability between spatially and temporally distinct locations than what is possible by δ15N and δ13C analysis alone. When combining all three proxies, a more detailed and refined dietary analysis is possible
Promotion of oxygen reduction by a bio-inspired tethered iron phthalocyanine carbon nanotube-based catalyst
Electrocatalysts for oxygen reduction are a critical component that may dramatically enhance the performance of fuel cells and metal-air batteries, which may provide the power for future electric vehicles. Here we report a novel bio-inspired composite electrocatalyst, iron phthalocyanine with an axial ligand anchored on single-walled carbon nanotubes, demonstrating higher electrocatalytic activity for oxygen reduction than the state-of-the-art Pt/C catalyst as well as exceptional durability during cycling in alkaline media. Theoretical calculations suggest that the rehybridization of Fe 3d orbitals with the ligand orbitals coordinated from the axial direction results in a significant change in electronic and geometric structure, which greatly increases the rate of oxygen reduction reaction. Our results demonstrate a new strategy to rationally design inexpensive and durable electrochemical oxygen reduction catalysts for metal-air batteries and fuel cells.close34
Monocyte behaviour and tissue transglutaminase expression during experimental autoimmune encephalomyelitis in transgenic CX3CR1gfp/gfp mice
Leukocyte infiltration into the central nervous system (CNS) is a key pathological feature in multiple sclerosis (MS) and the MS animal model experimental autoimmune encephalomyelitis (EAE). Recently, preventing leukocyte influx into the CNS of MS patients is the main target of MS therapies and insight into cell behaviour in the circulation is needed for further elucidation of such therapies. In this study, we aimed at in vivo visualization of monocytes in a time-dependent manner during EAE. Using intravital two-photon microscopy (IVM), we imaged CX3CR1gfp/gfp mice during EAE, visualizing CX3CR1-GFP+ monocytes and their dynamics in the spinal cord vasculature. Our observations showed that intraluminal crawling of CX3CR1-GFP+ monocytes increased even before the clinical onset of EAE due to immunization of the animals. Furthermore, intraluminal crawling remained elevated during ongoing clinical disease. Besides, the displacement of these cells was larger during the peak of EAE compared to the control animals. In addition, we showed that the enzyme tissue transglutaminase (TG2), which is present in CNS-infiltrated cells in MS patients, is likewise found in CX3CR1-GFP+ monocytes in the spinal cord lesions and at the luminal side of the vasculature during EAE. It might thereby contribute to adhesion and crawling of monocytes, facilitating extravasation into the CNS. Thus, we put forward that interference with monocyte adhesion, by e.g. inhibition of TG2, should be applied at a very early stage of EAE and possibly MS, to effectively combat subsequent pathology
Examining the surface phase diagram of IrTe with photoemission
In the transition metal dichalcogenide IrTe, low-temperature
charge-ordered phase transitions involving Ir dimers lead to the occurrence of
stripe phases of different periodicities, and nearly degenerate energies.
Bulk-sensitive measurements have shown that, upon cooling, IrTe undergoes
two such first-order transitions to and
reconstructed phases at ~K and ~K,
respectively. Here, using surface sensitive probes of the electronic structure
of IrTe, we reveal the first-order phase transition at ~K to
the stripes phase, previously proposed to be the surface ground
state. This is achieved by combining x-ray photoemission spectroscopy and
angle-resolved photoemission spectroscopy, which give access to the evolution
of stripe domains and a particular surface state, the energy of which is
dependent on the Ir dimer length. By performing measurements over a full
thermal cycle, we also report the complete hysteresis of all these phases
The effects of water and microstructure on the performance of polymer electrolyte fuel cells
n this paper, we present a comprehensive non-isothermal, one-dimensional model of the cathode side of a Polymer Electrolyte Fuel Cell. We explicitly include the catalyst layer, gas diffusion layer and the membrane. The catalyst layer and gas diffusion layer are characterized by several measurable microstructural parameters. We model all three phases of water, with a view to capturing the effect that each has on the performance of the cell. A comparison with experiment is presented, demonstrating excellent agreement, particularly with regard to the effects of water activity in the channels and how it impacts flooding and membrane hydration. We present several results pertaining to the effects of water on the current density (or cell voltage), demonstrating the role of micro-structure, liquid water removal from the channel, water activity, membrane and gas diffusion layer thickness and channel temperature. These results provide an indication of the changes that are required to achieve optimal performance through improved water management and MEA-component design. Moreover, with its level of detail, the model we develop forms an excellent basis for a multi-dimensional model of the entire membrane electrode assembly
Reactivity of (1-methoxycarbonylpentadienyl)iron(1+) cations with hydride, methyl, and nitrogen nucleophiles
The reaction of tricarbonyl and (dicarbonyl)triphenylphosphine (1-methoxycarbonyl-pentadientyl)iron(1+) cations 7 and 8 with methyl lithium, NaBH3CN, or potassium phthalimide affords (pentenediyl)iron complexes 9a-c and 11a-b, while reaction with dimethylcuprate, gave (E,Z-diene)iron complexes 10 and 12. Oxidatively induced-reductive elimination of 9a-c gave vinylcyclopropanecarboxylates 17a-c. The optically active vinylcyclopropane (+)-17a, prepared from (1S)-7, undergoes olefin cross-metathesis with excess (+)-18 to yield (+)-19, a C9C16 synthon for the antifungal agent ambruticin. Alternatively reaction of 7 with methanesulfonamide or trimethylsilylazide gave (E,E-diene)iron complexes 14d and e. Huisgen [3 + 2] cyclization of the (azidodienyl)iron complex 14e with alkynes afforded triazoles 25a-e
Probing electron-phonon interactions away from the Fermi level with resonant inelastic x-ray scattering
Interactions between electrons and lattice vibrations are responsible for a wide range of material properties and applications. Recently, there has been considerable interest in the development of resonant inelastic x-ray scattering (RIXS) as a tool for measuring electron-phonon (
e
-ph) interactions. Here, we demonstrate the ability of RIXS to probe the interaction between phonons and specific electronic states both near to, and away from, the Fermi level. We perform carbon
K
-edge RIXS measurements on graphite, tuning the incident x-ray energy to separately probe the interactions of the
π
∗
and
σ
∗
electronic states. Our high-resolution data reveal detailed structure in the multiphonon RIXS features that directly encodes the momentum dependence of the
e
-ph interaction strength. We develop a Green’s-function method to model this structure, which naturally accounts for the phonon and interaction-strength dispersions, as well as the mixing of phonon momenta in the intermediate state. This model shows that the differences between the spectra can be fully explained by contrasting trends of the
e
-ph interaction through the Brillouin zone, being concentrated at the
Γ
and
K
points for the
π
∗
states while being significant at all momenta for the
σ
∗
states. Our results advance the interpretation of phonon excitations in RIXS and extend its applicability as a probe of
e
-ph interactions to a new range of out-of-equilibrium situations
- …